scholarly journals Eastern and North Eastern sub-divisions of India : An analysis of trend and chaotic behaviour of rainfall in different seasons

MAUSAM ◽  
2021 ◽  
Vol 71 (4) ◽  
pp. 625-636
Author(s):  
BASAK PIJUSH

The aim of the study is to understand trend or non-linearity along with a chaotic behaviour, if any, of Eastern and North Eastern sub-divisional rainfall, namely Orissa, Gangetic West Bengal, Sub Himalayan West Bengal, Assam and Meghalaya and also Nagaland, Manipur, Mizoram and Tripura based on rainfall data of 143 years (1871-2013). The analysis is performed for examining behaviour of rainfall in each of the seasons, namely, Pre monsoon, South West monsoon, North East monsoon and also Annual rainfall extracted from the monthly data. For that purpose, a trend analysis with Hurst Exponent and non-linearity analysis with Lyapunov Exponent are employed. The analysis revealed that rainfall of Orissa is persistent for all the seasons whilst the rainfall is persistent in Gangetic West Bengal in Pre monsoon and North East monsoon and Assam and Meghalaya along with Nagaland, Manipur, Mizoram and Tripura exhibit persistent behaviour in South West Monsoon and annually. Sub Himalayan West Bengal exhibit persistence in annual rainfall only. Chaotic tendency in low magnitude is located in many cases whilst non-chaotic situation has occurred when the persistence is found, mainly in pre-monsoon season. Moreover, the analysis of Hurst and Lyapunov Exponent revealed to identify two groups of sub-divisions with exactly similar region of every respect. Those two groups contain (i) sub-divisions Orissa and Assam and Meghalaya and also (ii) sub-divisions Sub Himalayan West Bengal and Nagaland, Mizoram, Manipur and Tripura although those are at distances of hundreds of kilometers away. The behaviour of those subdivisions in a group has similar behaviour in all respects.

2021 ◽  
Vol 16 (3) ◽  
pp. 890-897
Author(s):  
P. Ponnuchakkammal P. Ponnuchakkammal ◽  
B. Violet Joy ◽  
P. Aravind ◽  
A. Raviraj A. Raviraj

Precipitation is one of the transportation components in hydrological cycle. The magnitude of precipitation swings with time and space. Majorly India receives precipitation in the form of rainfall. Precipitation plays a key role in the rainfed agriculture. The present study deals with the rainfall characteristics of Tiruchirappalli district, Tamil Nadu. Seasonal rainfall data from eighteen rain gauge stations (1971-2012) have been taken for analysis of seasonal and annual rainfall pattern of Tiruchirappalli district. Mean rainfall of the district is about 696 mm. The highest rainfall of 1247 mm recorded in the year 2005 and the lowest precipitation of 227 mm recorded in the year 1976. About 48 percent and 35 percent of the rainfall received in North East and South West Monsoon, respectively. Spatial rainfall distribution was studied with the help of Kriging interpolation technique and respective maps were prepared with Geographical Information System. The percentage departure of annual rainfall is classified under the category of excess, normal and large excess category. South East and central part of Tiruchirappalli receives moderate to low rainfall. North East parts of Tiruchirappalli district such as pullambadi, Lalgudi and nearby areas received maximum rainfall during North East Monsoon and South West Monsoon. In winter season Manapparai and Vaiyampatti region received more rainfall while in summer season Thottiam and Mayanur area received more rainfall. The two major highlighted crops in Trichy district are Banana and Onion. Tiruchirappalli district is one of the Banana growing belts in Tamil Nadu. Spatial distribution of rainfall maps will be helpful to form a crop plan for different crops to increase the agricultural productivity of Tiruchirappalli district and to ensure the food security.


2016 ◽  
Vol 11 (2) ◽  
pp. 567-576 ◽  
Author(s):  
S Thangamani ◽  
A Raviraj

The present study attempted to find out the relation between rainfall variability, trend and distribution in Dindigul district of Amaravathi basin for groundwater management. A detailed analysis of monthly, seasonal and spatial variation of rainfall (1971-2014) for the study area had carried out. The normal annual rainfall of the district varies from 700 to 1600 mm. The north east monsoon contributed the maximum rainfall of 439mm (50%), followed by South-west monsoon which contributed 254 mm (29%), summer which contributed 147 mm (16.8%) and winter contributed the minimum rainfall of 26.8 mm (2.8%).A high value of CV had observed in all the stations, which indicate the greater rainfall variability, and more chances of occurrence of drought. Higher variability of coefficient of variation was observed in central part of the district.Theresult of MMK z-test at 1% level indicates that the majority of stations showed non-significant trend in annual, summer and monsoon season of rainfall. Out of the 13 stations studied in the district, annual rainfall of only one station (Kuthiraiyar) showed significant decreasing trend in annual rainfall (-3.05 mm/year) and five stations recorded the significant decreasing trend in rainy days during southwest monsoon. Chatrapatti and Natham stations recorded the significant increasing trend during north east monsoon and Virupatchi station recorded the decreasing trend.


2020 ◽  
Vol 12 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Pijush Basak

The South West Monsoon rainfall data of the meteorological subdivision number 6 of India enclosing Gangetic West Bengal is shown to be decomposable into eight empirical time series, namely Intrinsic Mode Functions. This leads one to identify the first empirical mode as a nonlinear part and the remaining modes as the linear part of the data. The nonlinear part is modeled with the technique Neural Network based Generalized Regression Neural Network model technique whereas the linear part is sensibly modeled through simple regression method. The different Intrinsic modes as verified are well connected with relevant atmospheric features, namely, El Nino, Quasi-biennial Oscillation, Sunspot cycle and others. It is observed that the proposed model explains around 75% of inter annual variability (IAV) of the rainfall series of Gangetic West Bengal. The model is efficient in statistical forecasting of South West Monsoon rainfall in the region as verified from independent part of the real data. The statistical forecasts of SWM rainfall for GWB for the years 2012 and 2013 are108.71 cm and 126.21 cm respectively, where as corresponding to the actual rainfall of 93.19 cm 115.20 cm respectively which are within one standard deviation of mean rainfall.


Author(s):  
B. N. Thorat ◽  
B. M. Thombre ◽  
A. T. Shinde

In the present study pedigree records maintained at Cattle Cross Breeding Project, VNMKV, Parbhani (Maharashtra) for the period of 1995-2010 were utilized to study correlation of lactation length and climatic factors. The climatic parameters considered were temperature, relative humidity, wind velocity, sunshine hours and dry and wet bulb temperature along with THI. The data on monthly lactation length of cows calved during cold, hot, south-west monsoon and post monsoon seasons were considered. Correlation and multiple regression analysis was used to investigate various sources of variation in monthly lactation length. Monthly lactation length data were analyzed to ascertain the effect of climatic attributes and to know their association with lactation lengths. The average monthly lactation length was recorded as 220.21 + 6.75 days in Deoni cattle. It can be inferred that maximum lactation length was recorded during post monsoon season (240.94 + 11.26 days) followed by south-west monsoon season (222.28 + 9.00 days), cold season (218.67 + 8.25 days) and hot season (198.95 + 10.71 days), respectively..


2019 ◽  
Vol 8 (3) ◽  
pp. 4460-4465

There is a growing demand for spot specific forecast. Presently this has to be extracted from the regional forecast based on synoptic models. Synoptic models require input from various observatories of regions or the country and the central analysis centre is required for generating the synoptic charts. But recently the authors have established the potential of local data alone as a continuous time scale for use in effective local forecast using data mining techniques. Following the same association rule mining and classifier approach is tried for the forecast of wet and dog days on North East Monsoon and South West Monsoon months for the Chennai region with Latitude 13°11' N and Longitude 80°11' E, a coastal station over Bay of Bengal in South India and results are presented.


2015 ◽  
Vol 10 (1) ◽  
pp. 253-257
Author(s):  
Sanjay Bhelawe ◽  
M Manikandan ◽  
Rajesh Khavse ◽  
J Chaudhary ◽  
S Patel

Rainfall data of recent forty three years (1971-2013) of Labhandi station, Indira Gandhi Krishi Vishwavidhyalaya Raipur, Chhattisgarh was analysed with the method of incomplete gamma probability. The data revealed that the average rainfall of labhandi station is 1202 mm spread over 61 rainy days. Out of this 1055, 68, 53 and 27 mm received from south west monsoon (June-September), north east (October-December), summer (March-May) and winter season (January -February) respectively. Probability for receiving more than 100 mm of rainfall can be expected only at 25% probability level and that too in four weeks which is leading to the interpretation that rainfed rice production is a challenging task in this region. it has been found that at 75 per cent assured probability level rainfall of more than 200 mms can be expected only in July and August months and this rainfall is hardly sufficient for meeting the water requirement in upland situations. However at 50 per cent probability which is equivalent to average condition, cultivation of rice is possible under well water management conditions. On seasonal basis rainfall at assured probability level of 75% is not sufficient as the quantity is 795 mm rainfall in south-western monsoon season.


Author(s):  
Sumera Farooq ◽  
Nazia Arshad

Sediment characteristics plays important role in the determination and functioning of coastal ecosystems. The present study is an attempt to evaluate the variability in sediment characteristics of the three beaches: Clifton, Sandspit and Buleji, at the Karachi coast. The samples were collected during pre-monsoon and south-west monsoon seasons to evaluate the seasonal differences. The sediments of the three sites showed variations in moisture content, organic matter and grain size. The highest mean moisture (27.17%) and organic contents (3.5 %) were recorded from the sediments of Clifton. The maximum fraction of sediments (> 80 %) consist of fine to very fine sand at all studied sites. The sediments of Clifton were high in very fine sand fraction and low in coarse sand fraction as compared to Sandspit and Buleji. The sediments of all the three studied sites are moderately sorted, negatively coarse-skewed and showed leptokurtic distribution. The studied beaches of Clifton, Sandspit and Buleji shows dissimilarity in sediment characteristics as indicated through Cluster and PCA analysis. The monsoonal influence on sediment characteristics was also observed at all the three studied beaches. The strong wave action during SW monsoon season results in the deposition of the coarser sediments at the high tide level thus increasing the steepness of the beaches.


2021 ◽  
Vol 28 (1) ◽  
pp. 83-95
Author(s):  
V Geethu ◽  
Mamiyil Shamina

Cyanobacteria are Gram negative, photosynthetic and nitrogen fixing microorganisms which contribute much to our present-day life as medicines, foods, biofuels and biofertilizers. Western Ghats are the hotspots of biodiversity with rich combination of microbial flora including cyanobacteria. Though cosmopolitan in distribution, their abundance in tropical forests are not fully exploited. To fill up this knowledge gap, the present research was carried out on the cyanobacterial flora of Peruvannamuzhi forest and Janaki forests of Western Ghats in Kozhikode District, North Kerala State, India. Extensive specimen collections were conducted during South-West monsoon (June to September) and North-East monsoon (October to December) in the year 2019. The highest diversity of cyanobacteria was found on rock surfaces. A total of 18 cyanobacterial taxa were identified. Among them filamentous heterocystous forms showed maximum diversity with 10 species followed by non- heterocystous forms with 8 species. The highest number of cyanobacteria were identified from Peruvannamuzhi forest with 15 taxa followed by Janaki forest with 3 taxa. The non- heterocystous cyanobacterial genus Oscillatoria Voucher ex Gomont showed maximum abundance with 4 species. In this study we reported Planktothrix planktonica (Elenkin) Agagnostidis & Komárek 1988, Oscillatoria euboeica Anagnostidis 2001 and Nostoc interbryum Sant’Anna et al. 2007 as three new records from India. Bangladesh J. Plant Taxon. 28(1): 83-95, 2021 (June)


MAUSAM ◽  
2021 ◽  
Vol 62 (2) ◽  
pp. 179-196
Author(s):  
D.S. PAI ◽  
O.P. SREEJITH ◽  
S.G. NARGUND ◽  
MADHURI MUSALE ◽  
AJIT TYAGI

At present, India Meteorological Department (IMD) issues various monthly and seasonal operational forecasts for the south-west monsoon season using models based on latest statistical techniques with useful skill. Operational models are reviewed regularly and improved through in house research activities. For the forecasting of the south-west monsoon season (June – September) rainfall over the country as a whole, a newly introduced statistical ensemble forecasting system is used. In addition, models have been developed for the forecast of the monsoon season rainfall over four geographical regions (NW India, NE India, Central India and South Peninsula) of the country and forecast for the rainfall over the second half of the monsoon season over the country as a whole. Models have also been developed for issuing operational forecast for the monthly rainfall for the months of July, August & September over the country as a whole. Operational forecasts issued by IMD for 2010 south-west monsoon rainfall have been discussed and verified. In addition, the experimental forecasts for the season rainfall over the country as a whole based on bothstatistical and dynamical models received from various climate research institutes within the country other than IMD arealso discussed. The operational monthly and seasonal long range forecasts issued for the 2010 southwest monsoon season for the country as a whole were accurate. However, forecasts for the season rainfall over the 4 geographical regions (Northwest India, Central India, Northeast India and south Peninsular India) were not accurate as the forecast for South Peninsular India overestimated the actual rainfall and that for northeast India underestimated the actual rainfall. The experimental forecasts for the season rainfall over the country as whole from various climate research institutes within the country showed large variance (91 % - 112% of LPA).


Sign in / Sign up

Export Citation Format

Share Document