Report on Sarychev Peak (Russia)

2019 ◽  
Vol 44 (11) ◽  
Author(s):  
Keyword(s):  
2021 ◽  
Vol 13 (4) ◽  
pp. 638
Author(s):  
Nikolay Shestakov ◽  
Alexander Orlyakovskiy ◽  
Natalia Perevalova ◽  
Nikolay Titkov ◽  
Danila Chebrov ◽  
...  

Global Navigation Satellite Systems have been extensively used to investigate the ionosphere response to various natural and man-made phenomena for the last three decades. However, ionospheric reaction to volcano eruptions is still insufficiently studied and understood. In this work we analyzed the ionospheric response to the 11–16 June 2009 VEI class 4 Sarychev Peak volcano eruption by using surrounding Russian and Japanese GPS networks. Prominent covolcanictotal electron content (TEC)ionospheric disturbances (CVIDs) with amplitudes and periods ranged between 0.03–0.15 TECU and 2.5–4.5 min were discovered for the three eruptive events occurred at 18:51 UT, 14 June; at 01:15 and 09:18 UT, 15 June 2009. The estimates of apparent CVIDs velocities vary within 700–1000 m/s in the far-field zone (300–900 km to the southwest from the volcano) and 1300–1800 m/s in close proximity toSarychev Peak. The characteristics of the observed TEC variations allow us to attribute them to acoustic mode. The south-southwestward direction is preferred for CVIDs propagation. We concluded that the ionospheric response to a volcano eruption is mainly determined by a ratio between explosion strength and background ionization level. Some evidence of secondary (F2-layer) CVIDs’ source eccentric location were obtained.


2011 ◽  
Vol 4 (9) ◽  
pp. 1705-1712 ◽  
Author(s):  
S. A. Carn ◽  
T. M. Lopez

Abstract. We report attempted validation of Ozone Monitoring Instrument (OMI) sulfur dioxide (SO2) retrievals in the stratospheric volcanic cloud from Sarychev Peak (Kurile Islands) in June 2009, through opportunistic deployment of a ground-based ultraviolet (UV) spectrometer (FLYSPEC) as the volcanic cloud drifted over central Alaska. The volcanic cloud altitude (~12–14 km) was constrained using coincident CALIPSO lidar observations. By invoking some assumptions about the spatial distribution of SO2, we derive averages of FLYSPEC vertical SO2 columns for comparison with OMI SO2 measurements. Despite limited data, we find minimum OMI-FLYSPEC differences within measurement uncertainties, which support the validity of the operational OMI SO2 algorithm. However, our analysis also highlights the challenges involved in comparing datasets representing markedly different spatial and temporal scales. This effort represents the first attempt to validate SO2 in a stratospheric volcanic cloud using a mobile ground-based instrument, and demonstrates the need for a network of rapidly deployable instruments for validation of space-based volcanic SO2 measurements.


2014 ◽  
Vol 119 (17) ◽  
pp. 10,343-10,364 ◽  
Author(s):  
M. Fromm ◽  
G. Kablick ◽  
G. Nedoluha ◽  
E. Carboni ◽  
R. Grainger ◽  
...  

2020 ◽  
Author(s):  
Lieven Clarisse ◽  
Alexandre Deguine ◽  
Tim Hultberg ◽  
Nicolas Theys ◽  
Simon Carn ◽  
...  

<p>Hydrogen Chloride (HCl) is an important but still poorly understood magmatic volatile species. Degassed HCl and ratios with other volatiles can be used to monitor, understand and forecast volcanic activity. As the dominant chlorine reservoir species in the stratosphere, and a source of reactive halogens, HCl also plays an important role in the depletion of ozone. The contribution of volcanic HCl to the stratospheric budget is however somewhat debated, but it is generally accepted that scavenging by hydrometeors is a dominant process. Unlike the less soluble SO<sub>2</sub>, this prevents the majority of volcanically emitted HCl from reaching the stratosphere. Currently HCl measurements have only been reported from limb sounders (MLS and ACE-FTS in particular), but given their viewing geometry, their vertical sensitivity is limited to the upper troposphere/lower stratosphere. In the past ten years, MLS was able to measure traces of HCl in a number of large volcanic plumes such as those originating from Sarychev Peak, Nabro and Calbuco.</p><p>Here, we report the first measurements from IASI of HCl in volcanic plumes. We provide unambiguous spectroscopic identification of HCl in the 2670-2760 cm<sup>-1</sup> spectral region in several IASI observed spectra. A survey of 12 years of IASI data was carried out, and revealed several large plumes of volcanic HCl. We show two notably large plumes of HCl identified in the eruptions of Calbuco (2015) and Raikoke (2019). For these two eruptions, we show that HCl is detected in the lower altitude plumes emitted towards the end of the eruptions (and not in the main, higher-altitude and SO<sub>2</sub>-rich plumes).  This finding could be a result of the greater scavenging of HCl relative to SO<sub>2</sub> in rapidly rising plumes, but could also be related to particular degassing mechanics of different volatile components in the erupted melt. First quantitative estimates indicate that for the analysed plumes, the HCl/SO<sub>2</sub> molar ratios exceed one, which is much higher than the typical ratios measured by MLS (typically below 0.05) and also higher than reported from petrological data or in situ measurements (typically in the range 0.1-0.3).</p>


2011 ◽  
Vol 4 (3) ◽  
pp. 3861-3875 ◽  
Author(s):  
S. A. Carn ◽  
T. M. Lopez

Abstract. We report attempted validation of Ozone Monitoring Instrument (OMI) sulfur dioxide (SO2) retrievals in the stratospheric volcanic cloud from Sarychev Peak (Kurile Islands) in June 2009, through opportunistic deployment of a ground-based ultraviolet (UV) spectrometer (FLYSPEC) as the volcanic cloud drifted over Central Alaska. The volcanic cloud altitude (~12–14 km) was constrained using coincident CALIPSO lidar observations. By invoking some assumptions about the spatial distribution of SO2, we derive averages of FLYSPEC vertical SO2 columns for comparison with OMI SO2 measurements. Despite limited data, we find minimum OMI-FLYSPEC differences of ~5–6 % which support the validity of the operational OMI SO2 algorithm. These measurements represent the first attempt to validate SO2 in a stratospheric volcanic cloud using a mobile ground-based instrument, and demonstrate the need for a network of rapidly deployable instruments for validation of space-based volcanic SO2 measurements.


Sign in / Sign up

Export Citation Format

Share Document