scholarly journals Opportunistic validation of sulfur dioxide in the Sarychev Peak volcanic eruption cloud

2011 ◽  
Vol 4 (9) ◽  
pp. 1705-1712 ◽  
Author(s):  
S. A. Carn ◽  
T. M. Lopez

Abstract. We report attempted validation of Ozone Monitoring Instrument (OMI) sulfur dioxide (SO2) retrievals in the stratospheric volcanic cloud from Sarychev Peak (Kurile Islands) in June 2009, through opportunistic deployment of a ground-based ultraviolet (UV) spectrometer (FLYSPEC) as the volcanic cloud drifted over central Alaska. The volcanic cloud altitude (~12–14 km) was constrained using coincident CALIPSO lidar observations. By invoking some assumptions about the spatial distribution of SO2, we derive averages of FLYSPEC vertical SO2 columns for comparison with OMI SO2 measurements. Despite limited data, we find minimum OMI-FLYSPEC differences within measurement uncertainties, which support the validity of the operational OMI SO2 algorithm. However, our analysis also highlights the challenges involved in comparing datasets representing markedly different spatial and temporal scales. This effort represents the first attempt to validate SO2 in a stratospheric volcanic cloud using a mobile ground-based instrument, and demonstrates the need for a network of rapidly deployable instruments for validation of space-based volcanic SO2 measurements.

2011 ◽  
Vol 4 (3) ◽  
pp. 3861-3875 ◽  
Author(s):  
S. A. Carn ◽  
T. M. Lopez

Abstract. We report attempted validation of Ozone Monitoring Instrument (OMI) sulfur dioxide (SO2) retrievals in the stratospheric volcanic cloud from Sarychev Peak (Kurile Islands) in June 2009, through opportunistic deployment of a ground-based ultraviolet (UV) spectrometer (FLYSPEC) as the volcanic cloud drifted over Central Alaska. The volcanic cloud altitude (~12–14 km) was constrained using coincident CALIPSO lidar observations. By invoking some assumptions about the spatial distribution of SO2, we derive averages of FLYSPEC vertical SO2 columns for comparison with OMI SO2 measurements. Despite limited data, we find minimum OMI-FLYSPEC differences of ~5–6 % which support the validity of the operational OMI SO2 algorithm. These measurements represent the first attempt to validate SO2 in a stratospheric volcanic cloud using a mobile ground-based instrument, and demonstrate the need for a network of rapidly deployable instruments for validation of space-based volcanic SO2 measurements.


2013 ◽  
Vol 259 ◽  
pp. 290-307 ◽  
Author(s):  
Taryn Lopez ◽  
Simon Carn ◽  
Cynthia Werner ◽  
David Fee ◽  
Peter Kelly ◽  
...  

2007 ◽  
Vol 7 (1) ◽  
pp. 2857-2871 ◽  
Author(s):  
S. A. Carn ◽  
N. A. Krotkov ◽  
K. Yang ◽  
R. M. Hoff ◽  
A. J. Prata ◽  
...  

Abstract. Sulfate aerosol produced after injection of sulfur dioxide (SO2) into the stratosphere by volcanic eruptions can trigger climate change. We present new satellite data from the Ozone Monitoring Instrument (OMI) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) missions that reveal the composition, structure and longevity of a stratospheric SO2 cloud and derived sulfate layer following a modest eruption (0.2 Tg total SO2) of Soufriere Hills volcano, Montserrat on 20 May 2006. The SO2 cloud alone was tracked for over 3 weeks and a distance of over 20 000 km; unprecedented for an eruption of this size. Derived sulfate aerosol at an altitude of ~20 km had circled the globe by 22 June and remained visible in CALIPSO data until at least 6 July. These synergistic NASA A-Train observations permit a new appreciation of the potential effects of frequent, small-to-moderate volcanic eruptions on stratospheric composition and climate.


2012 ◽  
Vol 5 (11) ◽  
pp. 2635-2646 ◽  
Author(s):  
H. Yan ◽  
L. Chen ◽  
J. Tao ◽  
L. Su ◽  
J. Huang ◽  
...  

Abstract. Since June 2007, the Ozone Monitoring Instrument (OMI) Earth radiance data at specific viewing angles have been affected by the row anomaly, which causes large biases in sulfur dioxide (SO2) columns retrieved using the band residual difference (BRD) algorithm. To improve global measurements of atmospheric SO2 from OMI, we developed two correction approaches for the row anomaly effects in the northern latitudes and along the full orbit. Firstly the residual correction approach with median residual from a sliding 10° latitude range, and with that near the Equator was used to remove the anomalous high SO2 columns in the northern latitudes. Secondly, in the case of the row anomaly along the full orbit, the SO2 biases caused by the anomalous ozone (O3) column and underestimated Lambertian effective reflectivity (LER) were reduced, respectively, by using unaffected adjacent O3 column and residual correction with median residual from a sliding 10° latitude range. Comparisons with the OMI SO2 columns processed with median residual from a sliding 30° latitude range have illustrated the drastic improvements of our correction approaches under row anomaly conditions. The consistencies among the SO2 columns inside and outside the row anomaly areas have also demonstrated the effectiveness of our correction approaches under row anomaly conditions. The analyses of the underestimation and the errors caused by the O3 column and LER were conducted to understand the limitations of our correction approaches. The proposed approaches for the row anomaly effects can extend the valid range of OMI SO2 Planetary Boundary Layer (PBL) data produced using the BRD algorithm.


2015 ◽  
Vol 57 ◽  
Author(s):  
Sean David Egan ◽  
Martin Stuefer ◽  
Peter Webley ◽  
Catherine F. Cahill

We use the Weather Research Forecasting with Chemistry (WRF-Chem) model to simulate the evolution, dispersion and conversion of the sulfur dioxide (SO<sub>2</sub>) plume generated by the 2008 eruption of Kasatochi Volcano in Alaska, USA. About 1.7 Tg of SO<sub>2</sub> were dispersed into the atmosphere during three distinct explosive events. Stratospheric sulfur dioxide conversion chemistry is detailed and model output is compared to remote sensing retrievals from the Ozone Monitoring Instrument (OMI). WRF-Chem generated SO<sub>2</sub> column densities and plume locations similar to those from OMI retrievals as the plume traveled from the North Pacific through the continental United States and Canada. Analysis of SO<sub>2</sub> conversion established an eight day lifetime of SO<sub>2</sub> for the Kastaochi plume, which is a slightly shorter lifetime than derived by other modeling methods.


2003 ◽  
Author(s):  
Arlin J. Krueger ◽  
Nickolay A. Krotkov ◽  
Saswati Datta ◽  
Dave Flittner ◽  
Oleg Dubovik ◽  
...  

2017 ◽  
Vol 17 (1) ◽  
pp. 551-574 ◽  
Author(s):  
Christos S. Zerefos ◽  
Kostas Eleftheratos ◽  
John Kapsomenakis ◽  
Stavros Solomos ◽  
Antje Inness ◽  
...  

Abstract. This study examines the adequacy of the existing Brewer network to supplement other networks from the ground and space to detect SO2 plumes of volcanic origin. It was found that large volcanic eruptions of the last decade in the Northern Hemisphere have a positive columnar SO2 signal seen by the Brewer instruments located under the plume. It is shown that a few days after the eruption the Brewer instrument is capable of detecting significant columnar SO2 increases, exceeding on average 2 DU relative to an unperturbed pre-volcanic 10-day baseline, with a mean close to 0 and σ = 0.46, as calculated from the 32 Brewer stations under study. Intercomparisons with independent measurements from the ground and space as well as theoretical calculations corroborate the capability of the Brewer network to detect volcanic plumes. For instance, the comparison with OMI (Ozone Monitoring Instrument) and GOME-2 (Global Ozone Monitoring Experiment-2) SO2 space-borne retrievals shows statistically significant agreement between the Brewer network data and the collocated satellite overpasses in the case of the Kasatochi eruption. Unfortunately, due to sparsity of satellite data, the significant positive departures seen in the Brewer and other ground networks following the Eyjafjallajökull, Bárðarbunga and Nabro eruptions could not be statistically confirmed by the data from satellite overpasses. A model exercise from the MACC (Monitoring Atmospheric Composition and Climate) project shows that the large increases in SO2 over Europe following the Bárðarbunga eruption in Iceland were not caused by local pollution sources or ship emissions but were clearly linked to the volcanic eruption. Sulfur dioxide positive departures in Europe following Bárðarbunga could be traced by other networks from the free troposphere down to the surface (AirBase (European air quality database) and EARLINET (European Aerosol Research Lidar Network)). We propose that by combining Brewer data with that from other networks and satellites, a useful tool aided by trajectory analyses and modelling could be created which can also be used to forecast high SO2 values both at ground level and in air flight corridors following future eruptions.


Sign in / Sign up

Export Citation Format

Share Document