volcanic hazards
Recently Published Documents


TOTAL DOCUMENTS

350
(FIVE YEARS 92)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
G J Hearn

The Cenozoic East African Rift System (EARS) is the largest continental rift valley system on Earth. Extending over a total distance of approximately 4,500 km, and with an average width of about 50 km, it is home to some of East Africa's largest urban populations and some of its most important transport, energy and water supply infrastructure. Rifting commenced during the Early Miocene and crustal extension has continued to the present day, posing seismic and volcanic hazards throughout its history of human occupation. Deep-seated landslides also present significant challenges for public safety, land management and infrastructure development on the flanks of rift margins. The rift floor itself poses a range of geohazards to community livelihood and engineering infrastructure, including ground fissuring and cavity collapse, flooding and sedimentation. On the positive side, the development of the EARS has created hydrocarbon and geothermal energy resources, and geomaterials for use as aggregates and cement substitutes in road and building construction. Optimising the use of these resources requires careful planning to ensure sustainability, while land use management and infrastructure development must take full consideration of the hazards posed by the ground and the fragility and dynamism of the human and physical environment.


Volcanica ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 325-343
Author(s):  
Elisabeth Gallant ◽  
Lawrence Cole ◽  
Charles Connor ◽  
Amy Donovan ◽  
Danielle Molisee ◽  
...  

Vent opening hazard models are routinely used as inputs for assessing distal volcanic hazards (lava flows, tephra fallout) in distributed volcanic fields. These vent opening hazard models have traditionally relied on the location of mapped vents; seldom have they taken into account how vents are linked in space and time. We show that inputs needed to appropriately model distal hazards are fundamentally different than thoses required to model near-vent hazards (ground deformation). We provide a computational model to obtain more appropriate eruptive source parameters (ESPs) for distal volcanic hazard sources and show the utility of our code through three examples. The code's strength is that it links events based on the spatio-temporal relationships of vents through heirarchical clustering. The development of the code and its strenghts and weaknesses are discussed. This work challenges previous ideas about ESPs and we hope this work leads to further improvement in hazard assessment methods.


Volcanica ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 309-324
Author(s):  
Juan Anzieta ◽  
Glyn Williams-Jones ◽  
Benjamin Bernard ◽  
Hugo Ortiz ◽  
Silvia Vallejo ◽  
...  

Hazard and risk communication requires the design and dissemination of clear messages that enhance people’s actions before, during, and after volcanic crises. To create effective messages, the communication components such as message format and content, must be considered. Changes in technology are changing the way people communicate at an ever-increasing pace; thus, we propose revising the basic components of the communication process to improve the dialogue between scientists and the public. We describe communication issues during and outside volcanic crises in Ecuador and assess possible causes and consequences. These ideas were discussed during the short-duration “Volcano Geophysical Principles and Hazards Communications” Workshop in Baños, Ecuador in 2019. We review and propose communication strategies for volcanic hazards and risks that resulted from the workshop discussions and experiences of experts from the Instituto Geofísico (IG-EPN), local and international professors involved in volcano research and communication, and students from universities across Ecuador.


2021 ◽  
Author(s):  
Amanda Lanik ◽  
Jason Rogers ◽  
Ronald Karpilo

Geologic Resources Inventory reports provide information and resources to help park managers make decisions for visitor safety, planning and protection of infrastructure, and preservation of natural and cultural resources. Information in GRI reports may also be useful for interpretation. This report synthesizes discussions from a scoping meeting held in 2005 and a follow-up conference call in 2018. Chapters of this report discuss the geologic setting and significance, geologic features and processes, and geologic resource management issues within Lake Clark National Park and Preserve. Information about the previously completed GRI map data is also provided. GRI map posters (separate product) illustrate these data. Geologic features, processes, and resource management issues identified include volcanoes and volcanic hazards, bedrock, faults and folds, landslides and rockfall, earthquakes, tsunamis, mineral development and abandoned mineral lands, paleontological resources, glaciers and glacier monitoring, lakes, permafrost, and coastal features.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Lauren J. Vinnell ◽  
Emma E. Hudson-Doyle ◽  
David M. Johnston ◽  
Julia S. Becker ◽  
Lucy Kaiser ◽  
...  

AbstractLahars pose a significant risk to communities, particularly those living near snow-capped volcanoes. Flows of mud and debris, typically but not necessarily triggered by volcanic activity, can have huge impacts, such as those seen at Nevado Del Ruiz, Colombia, in 1985 which led to the loss of over 23,000 lives and destroyed an entire town. We surveyed communities around Mount Rainier, Washington, United States, where over 150,000 people are at risk from lahar impacts. We explored how factors including demographics, social effects such as perceptions of community preparedness, evacuation drills, and cognitive factors such as risk perception and self-efficacy relate to preparedness when living within or nearby a volcanic hazard zone. Key findings include: women have stronger intentions to prepare but see themselves as less prepared than men; those who neither live nor work in a lahar hazard zone were more likely to have an emergency kit and to see themselves as more prepared; those who will need help to evacuate see the risk as lower but feel less prepared; those who think their community and officials are more prepared feel more prepared themselves; and benefits of evacuation drills and testing evacuation routes including stronger intentions to evacuate using an encouraged method and higher self-efficacy. We make a number of recommendations based on these findings including the critical practice of regular evacuation drills and the importance of ongoing messaging that focuses on appropriate ways to evacuate as well as the careful recommendation for residents to identify alternative unofficial evacuation routes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Juliet Biggs ◽  
Atalay Ayele ◽  
Tobias P. Fischer ◽  
Karen Fontijn ◽  
William Hutchison ◽  
...  

AbstractOver the past two decades, multidisciplinary studies have unearthed a rich history of volcanic activity and unrest in the densely-populated East African Rift System, providing new insights into the influence of rift dynamics on magmatism, the characteristics of the volcanic plumbing systems and the foundation for hazard assessments. The raised awareness of volcanic hazards is driving a shift from crisis response to reducing disaster risks, but a lack of institutional and human capacity in sub-Saharan Africa means baseline data are sparse and mitigating geohazards remains challenging.


2021 ◽  
Vol 13 (22) ◽  
pp. 4648
Author(s):  
Alessandro Galvani ◽  
Giuseppe Pezzo ◽  
Vincenzo Sepe ◽  
Guido Ventura

The identification of the mechanisms responsible for the deformation of calderas is of primary importance for our understanding of the dynamics of magmatic systems and the evaluation of volcanic hazards. We analyze twenty years (1997–2018) of geodetic measurements on Ischia Island (Italy), which include the Mt. Epomeo resurgent block, and is affected by hydrothermal manifestations and shallow seismicity. The data from the GPS Network and the leveling route show a constant subsidence with values up to −15 ± 2.0 mm/yr and a centripetal displacement rate with the largest deformations on the southern flank of Mt. Epomeo. The joint inversion of GPS and levelling data is consistent with a 4 km deep source deflating by degassing and magma cooling below the southern flank of Mt. Epomeo. The depth of the source is supported by independent geophysical data. The Ischia deformation field is not related to the instability of the resurgent block or extensive gravity or tectonic processes. The seismicity reflects the dynamics of the shallow hydrothermal system being neither temporally nor spatially related to the deflation.


2021 ◽  
Author(s):  
Susanna F. Jenkins ◽  
Sébastien Biass ◽  
George T. Williams ◽  
Josh L. Hayes ◽  
Eleanor M. Tennant ◽  
...  

Abstract. Regional assessments provide a large-scale comparable vision of the threat posed by multiple sources and are useful for prioritising risk-mitigation actions. There is a need for such assessments from international, regional and national agencies, industries and governments to prioritise where further study and support could be focussed. Most existing regional studies on the threat posed by volcanic activity have relied on concentric radii as proxies for hazard footprints and have focused only on population exposure, often using indices to make first-order estimates of exposure. However, this approach is an oversimplification of volcanic hazards and their associated impacts. We have developed and applied a new approach that quantifies and ranks exposure to multiple volcanic hazards for 40 high-threat volcanoes in Southeast Asia. For each of our 40 volcanoes, hazard spatial extent, and intensity where appropriate, was probabilistically modelled for four volcanic hazards across three eruption scenarios, giving 697,080 individual hazard footprints plus 19,560 probabilistic hazard outputs. We then developed a GIS framework to overlay the spatial extent of probabilistic hazard footprints with open-access datasets across five exposure categories. Finally, we used our calculated exposure values to rank each of the 40 volcanoes in terms of the threat they pose to surrounding communities. We present VolcGIS, an open-source Python code that implements all of the spatial operations required for exposure analysis, available at github.com/vharg/VolcGIS. We provide all our outputs - more than 6,500 geotif files and 70 independent estimates of exposure to volcanic hazards across 40 volcanoes - in user-friendly format. Results highlight that the island of Java in Indonesia has the highest median exposure to volcanic hazards, with Merapi consistently ranking as the highest threat volcano. Hazard seasonality, as a result of varying wind conditions affecting tephra dispersal, leads to increased exposure values during the peak rainy season (January, February) in Java, but the peak dry season (January, February, March) in the Philippines. A key aim of our study was to highlight volcanoes that may have been overlooked, perhaps because they are not frequently or recently active, but that have the potential to affect large numbers of people and assets. It is not intended to replace official hazard and risk information provided by the individual country or volcano organisations. This study and the tools developed provide a road map for future multi-source regional volcanic exposure assessments, with the possibility to extend the assessment to other geographic regions and/or towards impact and loss.


Author(s):  
Giovanni Leone ◽  
Hiroyuki K. M. Tanaka ◽  
Marko Holma ◽  
Pasi Kuusiniemi ◽  
Dezső Varga ◽  
...  

Muography uses muons naturally produced in the interactions between cosmic rays and atmosphere for imaging and characterization of density differences and time-sequential changes in solid (e.g. rocks) and liquid (e.g. melts ± dissolved gases) materials in scales from tens of metres to up to a few kilometres. In addition to being useful in discovering the secrets of the pyramids, ore prospecting and surveillance of nuclear sites, muography successfully images the internal structure of volcanoes. Several field campaigns have demonstrated that muography can image density changes relating to magma ascent and descent, magma flow rate, magma degassing, the shape of the magma body, an empty conduit diameter, hydrothermal activity and major fault lines. In addition, muography is applied for long-term volcano monitoring in a few selected volcanoes around the world. We propose using muography in volcano monitoring in conjunction with other existing techniques for predicting volcanic hazards. This approach can provide an early indication of a possible future eruption and potentially the first estimate of its scale by producing direct evidence of magma ascent through its conduit in real time. Knowing these issues as early as possible buy critically important time for those responsible for the local alarm and evacuation protocols.


Volcanica ◽  
2021 ◽  
Vol 4 (S1) ◽  
pp. 203-222
Author(s):  
Amilcar Roca ◽  
Edgar Roberto Mérida Boogher ◽  
Carla Maria Fernanda Chun Quinillo ◽  
Dulce María Esther González Domínguez ◽  
Gustavo Adolfo Chigna Marroquin ◽  
...  

The tectonic and volcanic environment in Guatemala is large and complex. Three major tectonic plates constantly interacting with each other, and a volcanic arc that extends from east to west in the southern part of the country, demand special attention in terms of monitoring and scientific studies. The Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH) is the institute in charge of executing these actions at the national and civil level.In recent years, INSIVUMEH has formed a volcanology team consisting of multi-disciplinary personnel that conducts the main volcanological monitoring and research activities. These activities include: seismic and acoustic signal analysis, evaluation and analysis of the volcanic hazards, installation and maintenance of monitoring equipment, and the socialization and dissemination of volcanic knowledge. Of all the volcanic structures in Guatemala, three volcanoes (Fuego, Pacaya, and Santiaguito) are in constant eruption and require all of the available resources (economic and human). These volcanoes present a wide range of volcanic hazards (regarding type and magnitude) that make daily monitoring a great challenge. One of the greatest goals achieved by the volcanology team has been the recent development of a Relative Threat Ranking of Guatemala Volcanoes, taking into account different parameters that allow improved planning in the future, both in monitoring and research. El ambiente tectónico y volcánico de Guatemala es extenso y complejo. Tres grandes placas tectónicas, que interactúan constantemente entre sí, y un arco volcánico, que se extiende de este a oeste en la parte sur del país, exigen especial atención en términos de monitoreo y estudios científicos. El Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH) es el instituto encargado de ejecutar estas acciones a nivel nacional y civil. En los últimos años, INSIVUMEH ha formado un equipo de vulcanología conformado por personal multidisciplinario que realiza las principales actividades de seguimiento e investigación vulcanológica. Estas actividades incluyen: análisis de señales sísmicas y acústicas, evaluación y análisis de peligros volcánicos, instalación y mantenimiento de equipos de monitoreo, y socialización y difusión del conocimiento volcánico. De todas las estructuras volcánicas de Guatemala, tres volcanes (Fuego, Pacaya y Santiaguito) están en constante erupción y requieren todos los recursos disponibles (económicos y humanos). Estos volcanes presentan una amplia gama de peligros volcánicos (en cuanto a tipo y magnitud), haciendo que el monitoreo diario sea un gran desafío. Uno de los mayores logros del equipo de vulcanología ha sido el desarrollo reciente de un Ranking de Peligrosidad Relativa de los Volcanes de Guatemala, tomando en cuenta diferentes parámetros que permitan una mejor planificación en el futuro, tanto en el monitoreo como en la investigación.


Sign in / Sign up

Export Citation Format

Share Document