scholarly journals Expansion of specialized metabolism-related superfamily genes via whole genome duplications during angiosperm evolution

2014 ◽  
Vol 31 (5) ◽  
pp. 579-584 ◽  
Author(s):  
Yosuke Kawai ◽  
Eiichiro Ono ◽  
Masaharu Mizutani
Nature Plants ◽  
2021 ◽  
Author(s):  
Liuyu Qin ◽  
Yiheng Hu ◽  
Jinpeng Wang ◽  
Xiaoliang Wang ◽  
Ran Zhao ◽  
...  

AbstractAristolochia, a genus in the magnoliid order Piperales, has been famous for centuries for its highly specialized flowers and wide medicinal applications. Here, we present a new, high-quality genome sequence of Aristolochia fimbriata, a species that, similar to Amborella trichopoda, lacks further whole-genome duplications since the origin of extant angiosperms. As such, the A. fimbriata genome is an excellent reference for inferences of angiosperm genome evolution, enabling detection of two novel whole-genome duplications in Piperales and dating of previously reported whole-genome duplications in other magnoliids. Genomic comparisons between A. fimbriata and other angiosperms facilitated the identification of ancient genomic rearrangements suggesting the placement of magnoliids as sister to monocots, whereas phylogenetic inferences based on sequence data we compiled yielded ambiguous relationships. By identifying associated homologues and investigating their evolutionary histories and expression patterns, we revealed highly conserved floral developmental genes and their distinct downstream regulatory network that may contribute to the complex flower morphology in A. fimbriata. Finally, we elucidated the genetic basis underlying the biosynthesis of terpenoids and aristolochic acids in A. fimbriata.


Cell Reports ◽  
2012 ◽  
Vol 2 (5) ◽  
pp. 1387-1398 ◽  
Author(s):  
Param Priya Singh ◽  
Séverine Affeldt ◽  
Ilaria Cascone ◽  
Rasim Selimoglu ◽  
Jacques Camonis ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 563 ◽  
Author(s):  
Anna Szczepaniak ◽  
Michał Książkiewicz ◽  
Jan Podkowiński ◽  
Katarzyna Czyż ◽  
Marek Figlerowicz ◽  
...  

Acetyl-coenzyme A carboxylase (ACCase, E.C.6.4.1.2) catalyzes acetyl-coenzyme A carboxylation to malonyl coenzyme A. Plants possess two distinct ACCases differing by cellular compartment and function. Plastid ACCase contributes to de novo fatty acid synthesis, whereas cytosolic enzyme to the synthesis of very long chain fatty acids, phytoalexins, flavonoids, and anthocyanins. The narrow leafed lupin (Lupinus angustifolius L.) represents legumes, a plant family which evolved by whole-genome duplications (WGDs). The study aimed on the contribution of these WGDs to the multiplication of ACCase genes and their further evolutionary patterns. The molecular approach involved bacterial artificial chromosome (BAC) library screening, fluorescent in situ hybridization, linkage mapping, and BAC sequencing. In silico analysis encompassed sequence annotation, comparative mapping, selection pressure calculation, phylogenetic inference, and gene expression profiling. Among sequenced legumes, the highest number of ACCase genes was identified in lupin and soybean. The most abundant plastid ACCase subunit genes were accB. ACCase genes in legumes evolved by WGDs, evidenced by shared synteny and Bayesian phylogenetic inference. Transcriptional activity of almost all copies was confirmed. Gene duplicates were conserved by strong purifying selection, however, positive selection occurred in Arachis (accB2) and Lupinus (accC) lineages, putatively predating the WGD event(s). Early duplicated accA and accB genes underwent transcriptional sub-functionalization.


2018 ◽  
Vol 221 (1) ◽  
pp. 565-576 ◽  
Author(s):  
Liming Cai ◽  
Zhenxiang Xi ◽  
André M. Amorim ◽  
M. Sugumaran ◽  
Joshua S. Rest ◽  
...  

2020 ◽  
Vol 37 (11) ◽  
pp. 3324-3337
Author(s):  
Elise Parey ◽  
Alexandra Louis ◽  
Cédric Cabau ◽  
Yann Guiguen ◽  
Hugues Roest Crollius ◽  
...  

Abstract Whole-genome duplications (WGDs) have major impacts on the evolution of species, as they produce new gene copies contributing substantially to adaptation, isolation, phenotypic robustness, and evolvability. They result in large, complex gene families with recurrent gene losses in descendant species that sequence-based phylogenetic methods fail to reconstruct accurately. As a result, orthologs and paralogs are difficult to identify reliably in WGD-descended species, which hinders the exploration of functional consequences of WGDs. Here, we present Synteny-guided CORrection of Paralogies and Orthologies (SCORPiOs), a novel method to reconstruct gene phylogenies in the context of a known WGD event. WGDs generate large duplicated syntenic regions, which SCORPiOs systematically leverages as a complement to sequence evolution to infer the evolutionary history of genes. We applied SCORPiOs to the 320-My-old WGD at the origin of teleost fish. We find that almost one in four teleost gene phylogenies in the Ensembl database (3,394) are inconsistent with their syntenic contexts. For 70% of these gene families (2,387), we were able to propose an improved phylogenetic tree consistent with both the molecular substitution distances and the local syntenic information. We show that these synteny-guided phylogenies are more congruent with the species tree, with sequence evolution and with expected expression conservation patterns than those produced by state-of-the-art methods. Finally, we show that synteny-guided gene trees emphasize contributions of WGD paralogs to evolutionary innovations in the teleost clade.


Sign in / Sign up

Export Citation Format

Share Document