scholarly journals Design of Miniaturized Dual-Band Artificial Magnetic Conductor with Easy Control of Second/First Resonant Frequency Ratio

2013 ◽  
Vol 13 (2) ◽  
pp. 104-112 ◽  
Author(s):  
Son Xuat Ta ◽  
Ikmo Park
Frequenz ◽  
2018 ◽  
Vol 72 (11-12) ◽  
pp. 511-515 ◽  
Author(s):  
Weiyang Yin ◽  
Hou Zhang ◽  
Tao Zhong ◽  
Xueliang Min

Abstract Using 2.5-dimension structure, a novel miniaturized dual-band FSS with closely spaced resonances is proposed in the paper. The special design of the geometry contributes to two closely spaced resonances at 1.69 GHz and 2.16 GHz respectively and the frequency ratio of upper to the lower resonant frequency is 1.27. Besides, the two bands can be controlled individually by varying corresponding parameters. The size of the proposed FSS is only 0.057λ0, where the λ0 represents free space wavelength at lower resonant band. Furthermore, the simulation results show the proposed FSS exhibits stable response with different incident angles and polarizations. To understand the design better, the distribution of surface current is analyzed to explain the operating mechanism of the proposed FSS. Finally, the proposed FSS is fabricated and the measurement results are in accordance with the simulation results.


2020 ◽  
Vol 9 (1) ◽  
pp. 1722-1725

To improve the antenna characteristics in terms of bandwidth, gain and its radiation characteristics without providing any phase reflections, Artificial Magnetic Conductor (AMC) are used in antenna designing. This paper initially designed AMC structure for 2.4GHz frequency. The proposed AMC structure consists of three L shaped and inverted L shaped slots and provides zero degrees phase reflection at 2.4GHz resonant frequency. This proposed AMC structure is incorporated on conventional micro strip square patch antenna and results are simulated in High Frequency Structure Simulator (HFSS) software. The Proposed AMC incorporated patch antenna, return loss is improved from -16.16dB to -31.75dB, VSWR is from 1.42 to 1.05, the band width is increased from 16.5 MHz to 348.1 MHz This design resonates at a frequency of 2.4GHz and applicable to Wi-Fi applications.


Sign in / Sign up

Export Citation Format

Share Document