read range
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 32)

H-INDEX

10
(FIVE YEARS 3)

Author(s):  
Shilpa Choudhary ◽  
◽  
Abhishek Sharma ◽  
Arpana Mishra ◽  
◽  
...  

In today’s era RFID system plays a key role in the field of asset tracking but its maximum read range or detectability may get degraded due to the challenges which are being provided by varying atmospheric conditions. So, to study the effect of these challenging atmospheric conditions, experimental investigation and statistical analysis of RFID system detectability has been carried out. Varying surrounding temperature, humidity and the presence of soil layer thickness in between RFID reader and tag and its five different grain sizes were considered as input parameters. All these observations were carried out for three different soils i.e. sandy soil, Silt and clay. Execution of test was carried out according to the MINITAB 17 tool. According to ANOVA analysis as well as from interaction plot it was found that soil layer thickness have more impact on RFID system read range and R2 value was found to be 96.91%, 99.64% and 99.78% for RRSS, RRS and RRC respectively. Composite desirability of optimization was found to be 0.8425. Optimum values of process parameters Temperature, Soil Layer Thickness, Relative Humidity and Soil Grain Size were found to be 303.3°K, 2.5 cm, 40.1 %, 1.92 mm respectively. Best values of responses were found to be 10.94 cm for (Read Range in presence of Clay); 11.02 cm (Read Range in presence of Silt) and 10.97 cm (Read Range in presence of Sandy Soil).


2021 ◽  
pp. 113227
Author(s):  
Yee Jher Chan ◽  
Adam R. Carr ◽  
Subhanwit Roy ◽  
Caden M. Washburn ◽  
Nathan Neihart ◽  
...  

Author(s):  
Shivani Sharma ◽  
Malay Ranjan Tripathy ◽  
Ajay Kumar Sharma

2021 ◽  
Author(s):  
Mahmoud Wagih ◽  
Junjie Shi

Owing to its low relative permittivity, very few microwave sensors have been developed for monitoring ice deposition. This paper presents the first use of UHF RFID tags for wireless RF ice sensing applications. Despite its low permittivity, the existence of ice as a superstrate on a planar ultra-thin dipole antenna can lower the resonance frequency of the antenna significantly. The RFID tags, having a measured unloaded range of 9.4 m, were evaluated for remotely detecting the formation of ice in various scenarios and up to 10~m from the reader, as well as monitoring the ice thawing, based on the Relative Signal Strength (RSS) in a phase-free approach. Unlike conventional RSS-based sensing approaches where the tag's read-range is reduced as the RSS decreases in response to the stimulant, the ice superstrate improves the impedance matching of the tags, maintaining a 10 m loaded read-range with over 12 dB ice-sensitivity, in an echoic multi-path environment. The long range and high sensitivity show that UHF RFID is a promising method of detecting and monitoring ice formation and thawing in future smart cities.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 819
Author(s):  
Nabil Khalid ◽  
Rashid Mirzavand ◽  
Ashwin K. Iyer

We present a survey on battery-less Radio Frequency Identification (RFID-based wireless sensors that have emerged in the past several years. We discuss the evolution of RFID turning into wireless sensors. Moreover, we talk about different components of these battery-less RFID-based wireless sensors, five main topologies that transform a simple RFID chip into a battery-less wireless sensor, and state-of-the-art implementations of these topologies. In battery-less wireless sensors, the read range is of key importance. Hence, we discuss how each component of the sensor plays its role in determining the read range and how each topology exploits these components to optimize read range, complexity, and/or cost. Additionally, we discuss potential future directions that can help provide improvements in RFID-based wireless sensor technology.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zahangir Khan ◽  
Xiaochen Chen ◽  
Han He ◽  
Adnan Mehmood ◽  
Johanna Virkki

This paper introduces a prototype of a low-energy high-temperature exposure sensor, which is a temperature-sensitive passive UHF RFID tag that bends forward when exposed to warm air. This “Bending Tag” design is based on a simple dipole antenna fabricated from an electro-textile material. The antenna has a 3D-printed substrate, which is constructed from a commercial Thermo Reactive Filament that gets soft when exposed to 50°C for 30 seconds, causing the tag to bend forward and curve. The sensor tag initially has a read range of more than 6 meters throughout the global UHF RFID frequency band. After bending, there is a significant decrease in the read range (to around 2–3 meters), which is caused by the changed backscattered power of the sensor tag. In an office environment, the backscattered power changes from −36 dBm to −43 dBm. The change in a sensor tag-reference tag system as dP% is approximately 70%. Based on these initial results, our bending tag can be further developed to work as a cost-effective low-energy sensor for monitoring high-temperature exposure.


2021 ◽  
Author(s):  
Mahmoud Wagih ◽  
Junjie Shi

Owing to its low relative permittivity, very few microwave sensors have been developed for monitoring ice deposition. This paper presents the first use of UHF RFID tags for wireless RF ice sensing applications. Despite its low permittivity, the existence of ice as a superstrate on a planar ultra-thin dipole antenna can lower the resonance frequency of the antenna significantly. The RFID tags, having a measured unloaded range of 9.4 m, were evaluated for remotely detecting the formation of ice in various scenarios and up to 10~m from the reader, as well as monitoring the ice thawing, based on the Relative Signal Strength (RSS) in a phase-free approach. Unlike conventional RSS-based sensing approaches where the tag's read-range is reduced as the RSS decreases in response to the stimulant, the ice superstrate improves the impedance matching of the tags, maintaining a 10 m loaded read-range with over 12 dB ice-sensitivity, in an echoic multi-path environment. The long range and high sensitivity show that UHF RFID is a promising method of detecting and monitoring ice formation and thawing in future smart cities.


2021 ◽  
Author(s):  
Mahmoud Wagih ◽  
Junjie Shi

Owing to its low relative permittivity, very few microwave sensors have been developed for monitoring ice deposition. This paper presents the first use of UHF RFID tags for wireless RF ice sensing applications. Despite its low permittivity, the existence of ice as a superstrate on a planar ultra-thin dipole antenna can lower the resonance frequency of the antenna significantly. The RFID tags, having a measured unloaded range of 9.4 m, were evaluated for remotely detecting the formation of ice in various scenarios and up to 10~m from the reader, as well as monitoring the ice thawing, based on the Relative Signal Strength (RSS) in a phase-free approach. Unlike conventional RSS-based sensing approaches where the tag's read-range is reduced as the RSS decreases in response to the stimulant, the ice superstrate improves the impedance matching of the tags, maintaining a 10 m loaded read-range with over 12 dB ice-sensitivity, in an echoic multi-path environment. The long range and high sensitivity show that UHF RFID is a promising method of detecting and monitoring ice formation and thawing in future smart cities.


Sign in / Sign up

Export Citation Format

Share Document