A Miniaturized Dual-Band FSS with Closely Spaced Resonances Using 2.5-Dimension Structure

Frequenz ◽  
2018 ◽  
Vol 72 (11-12) ◽  
pp. 511-515 ◽  
Author(s):  
Weiyang Yin ◽  
Hou Zhang ◽  
Tao Zhong ◽  
Xueliang Min

Abstract Using 2.5-dimension structure, a novel miniaturized dual-band FSS with closely spaced resonances is proposed in the paper. The special design of the geometry contributes to two closely spaced resonances at 1.69 GHz and 2.16 GHz respectively and the frequency ratio of upper to the lower resonant frequency is 1.27. Besides, the two bands can be controlled individually by varying corresponding parameters. The size of the proposed FSS is only 0.057λ0, where the λ0 represents free space wavelength at lower resonant band. Furthermore, the simulation results show the proposed FSS exhibits stable response with different incident angles and polarizations. To understand the design better, the distribution of surface current is analyzed to explain the operating mechanism of the proposed FSS. Finally, the proposed FSS is fabricated and the measurement results are in accordance with the simulation results.

Frequenz ◽  
2017 ◽  
Vol 71 (1-2) ◽  
pp. 57-63 ◽  
Author(s):  
Tao Zhong ◽  
Hou Zhang ◽  
Rui Wu ◽  
Xueliang Min

Abstract A novel single-layer dual-band miniaturized frequency selective surface (FSS) based on fractal structures is proposed and analyzed in this paper. A prototype with enough dimensions is fabricated and measured in anechoic chamber, and the measured results provide good agreement with the simulated. The simulations and measurements indicate that the dual-band FSS with bandstop selectivity center at 3.95 GHz and 7.10 GHz, and the whole dimension of the proposed FSS cell is only 7×7 mm2, amount to 0.092λ0×0.092λ0, that λ0 is free space wavelength at first resonant frequency. In addition, the center frequencies have scarcely any changes for different polarizations and incidences. What’s more, dual-band mechanism is analyzed clearly and it provides a new way to design novel miniaturized FSS structures.


2015 ◽  
Vol 9 (2) ◽  
pp. 341-348 ◽  
Author(s):  
Jin Zhang ◽  
Xianqi Lin ◽  
Jiawei Yu ◽  
Liying Nie

Patch antennas with a meandering slot and different distributions of grounded metallic vias are presented in this paper. The meandering slot is adopted to stimulate dual-band operation, while the number and position of the grounded metallic vias are suggested to achieve different radiation performances. The characteristics are analyzed in detail where we find that the existence of the vias also improves the impedance matching. Four samples are designed, where dual-band with both linear polarization, dual-band with circular- and linear-polarization, and single band with linear polarization are obtained, respectively. The samples are finally fabricated and the measurement results agree well with the simulation results.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Semyoung Oh ◽  
Hanjun Lee ◽  
Joo-Ho Jung ◽  
Gil-Young Lee

This letter presents a novel wideband miniaturized-element frequency selective surface (MEFSS). The simulation and measurement results show that the bandwidth of the proposed MEFSS is remarkably enhanced compared to that of an original second-order MEFSS while its size and total thickness are still small. A parametric study is also conducted to understand the operating mechanism of the proposed structure. The phenomenon observed in the parametric study is explained with an equivalent circuit model.


2016 ◽  
Vol 9 (2) ◽  
pp. 269-274 ◽  
Author(s):  
Bukuru Denis ◽  
Kaijun Song ◽  
Fan Zhang

A compact dual-band bandpass filter using stub-loaded stepped impedance resonator (SLSIR) with cross-slots is presented. The symmetric SLSIR is analyzed using even- and odd-mode techniques. Design equations are derived and they are used to guide the design of the circuits. Two passbands can be easily tuned by cross-slots and open stubs. Transmission zeros among each passbands are created, resulting in high isolation and frequency selectivity. An experimental circuit is fabricated and evaluated to validate the design concept. The fabricated filter is compact with 19.76 × 12.7 mm2. The measurement results are in good agreement with the full-wave simulation results.


2020 ◽  
Vol 8 (5) ◽  
pp. 2182-2187

A miniaturized quadrant slot antenna backed by the cavity using QMSIW technique is developed for dual-frequency applications. The design process is begun with FMSIW circular cavity which has been cut along magnetic wall twice to get quadrant sector of a circular cavity that is said to be a QMSIW cavity. The QMSIW cavity excited in TM210 and TM020 modes is loaded by quadrant slot which helps to decrease the resonant frequencies. The CST microwave studio is used to study the operating mechanism of various modes in the cavity. The antenna has been fabricated and measured the S11 and principle pattern and also compared with simulated results. The experimental results prove that the antenna S11 in dB is low at dual-frequency. One of the resonant frequencies is at 8.05 GHz and other 9.95 GHz with peak gains are around 6.25 dBi and 6.45 dBi respectively.


2019 ◽  
Vol 69 (5) ◽  
pp. 453-457
Author(s):  
Sambaiah Pelluri ◽  
Anmol Jain ◽  
M. V. Kartikeyan

A dual-band bandpass substrate integrated waveguide (SIW) filter is proposed using a quad-mode cavity in this paper. First two degenerative modes (TE102 and TE201) with via perturbation give the first passband. The second passband is realised by using higher modes (side and diagonal modes of TE202) which are obtained by putting square slot at the center of the cavity. The square slot increases the frequency ratio of the center frequencies of first and second passbands. Moreover, orthogonal feed-lines are used in the proposed design to increase transmission zeros (TZs) which helps to improve the selectivity and out-of-band rejection of the filter. Designed and fabricated a dualband filter prototype using a single layer printed circuit board (PCB) technology, size is only 19 mm × 19 mm. The insertion losses are 2.1 dB and 2.4 dB, and fractional bandwidths of 3.40 per cent and 2.00 per cent at 11.00 and 15.58 GHz, respectively. The measurement results show close agreement with the simulation results.


2012 ◽  
Vol 424-425 ◽  
pp. 573-576
Author(s):  
Jin Ping Hu ◽  
Guo Hui Li ◽  
Wei Dong Fang ◽  
Wei Zhang ◽  
Hai Ping Hu

A narrowband dual-band bandpass filter based on step impedance resonator (SIR) is proposed in this paper to realize high performance with a compact size. The center frequencies of the designed filter are 2.4 and 5.8GHz, where it is suitable for wireless communication system. The absolute bandwidth approaches 200MHz with 8.3% fractional bandwidth at -3dB, and the simulations show that the return loss of the first and the second band is lower than -20dB. Between the two passbands, there is a transmission zero which can achieve a high out-band isolation. For demonstration, the filter has been fabricated and the measurement results show the excellent agreement with the theoretical simulation results


2021 ◽  
Vol 20 (2) ◽  
pp. 49-52
Author(s):  
Fatimah Fawzi Hashim ◽  
Wan Nor Liza Mahadi ◽  
Tarik Abdul Latef ◽  
Mohamad Ariff

A directional bended microstrip patch antenna was designed for dual-band ISM applications. CST (2014) was used to simulate an antenna with the dimension of 50 x 20 x 1.04 mm and felt substrate with partial copper ground. This antenna was operated at 2.4 GHz and 5.0 GHz with gains of 1.6 dBi and 5.61 dBi and bandwidths of 40% and 75%. The proposed antenna was bended to cater the human body curves. The proposed bended structure gave a high performance in free space, and the results were found identical with the phantom simulation results. This antenna is deemed suitable to be built in clothes for WBNs applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Feifei Huo ◽  
Fei Liu ◽  
Min Zhu ◽  
Jianhui Bao

The work presented in this paper concerns a method for the miniaturized frequency selective surface (FSS) based on the meander lines. A miniaturized dual-bandstop FSS structure based on meander lines with spiral-shape is proposed and simulated. The equivalent circuit and current distributions are introduced to explain the FSS performance. The size of the unit cell is 10 mm, which is about 0.037 wavelength at the first resonant frequency. Simulation results indicate that the proposed FSS has a frequency shift smaller than 1% for different polarizations with an oblique incident angle of 60°. A prototype of the FSS is fabricated and measured. The measurement results show that the FSS is polarization-insensitive and angle-insensitive.


Sign in / Sign up

Export Citation Format

Share Document