scholarly journals SAR Image De-Noising based on GNL-Means with Optimized Pixel-Wise Weighting in Non-Subsample Shearlet Domain

2016 ◽  
Vol 10 (1) ◽  
pp. 16 ◽  
Author(s):  
Shuaiqi Liu ◽  
Yu Zhang ◽  
Qi Hu ◽  
Ming Liu ◽  
Jie Zhao

SAR images have been widely used in many fields such as military and remote sensing. So the suppression of the speckle has been an important research issues. To improve the visual effect of non-local means, generalized non-local (GNL) means with optimized pixel-wise weighting is applied to shrink the coefficients of non-subsample Shearlet transform (NSST) of SAR image. The new method can optimize the weight of GNL, which not only improve the PSNR of de-noised image, but also can significantly enhance the visual effect of de-noising image.

2020 ◽  
Vol 49 (3) ◽  
pp. 299-307
Author(s):  
Zengguo Sun ◽  
Rui Shi ◽  
Wei Wei

When Synthetic-Aperture (SAR) image is transformed into wavelet domain and other transform domains, most of the coefficients of the image are small or zero. This shows that SAR image is sparse. However, speckle can be seen in SAR images. The non-local means is a despeckling algorithm, but it cannot overcome the speckle in homogeneous regions and it blurs edge details of the image. In order to solve these problems, an improved non-local means is suggested. At the same time, in order to better suppress the speckle effectively in edge regions, the non-subsampled Shearlet transform (NSST) is applied. By combining NSST with the improved non-local means, a new type of despeckling algorithm is proposed. Results show that the proposed algorithm leads to a satisfying performance for SAR images.


Author(s):  
R. Shi ◽  
Z. Sun

GF-3 synthetic aperture radar (SAR) images are rich in information and have obvious sparse features. However, the speckle appears in the GF-3 SAR images due to the coherent imaging system and it hinders the interpretation of images seriously. Recently, Shearlet is applied to the image processing with its best sparse representation. A new Shearlet-transform-based method is proposed in this paper based on the improved non-local means. Firstly, the logarithmic operation and the non-subsampled Shearlet transformation are applied to the GF-3 SAR image. Secondly, in order to solve the problems that the image details are smoothed overly and the weight distribution is affected by the speckle, a new non-local means is used for the transformed high frequency coefficient. Thirdly, the Shearlet reconstruction is carried out. Finally, the final filtered image is obtained by an exponential operation. Experimental results demonstrate that, compared with other despeckling methods, the proposed method can suppress the speckle effectively in homogeneous regions and has better capability of edge preserving.


2021 ◽  
Vol 7 ◽  
pp. e611
Author(s):  
Zengguo Sun ◽  
Guodong Zhao ◽  
Marcin Woźniak ◽  
Rafał Scherer ◽  
Robertas Damaševičius

The GF-3 satellite is China’s first self-developed active imaging C-band multi-polarization synthetic aperture radar (SAR) satellite with complete intellectual property rights, which is widely used in various fields. Among them, the detection and recognition of banklines of GF-3 SAR image has very important application value for map matching, ship navigation, water environment monitoring and other fields. However, due to the coherent imaging mechanism, the GF-3 SAR image has obvious speckle, which affects the interpretation of the image seriously. Based on the excellent multi-scale, directionality and the optimal sparsity of the shearlet, a bankline detection algorithm based on shearlet is proposed. Firstly, we use non-local means filter to preprocess GF-3 SAR image, so as to reduce the interference of speckle on bankline detection. Secondly, shearlet is used to detect the bankline of the image. Finally, morphological processing is used to refine the bankline and further eliminate the false bankline caused by the speckle, so as to obtain the ideal bankline detection results. Experimental results show that the proposed method can effectively overcome the interference of speckle, and can detect the bankline information of GF-3 SAR image completely and smoothly.


Author(s):  
M. Schmitt ◽  
L. H. Hughes ◽  
M. Körner ◽  
X. X. Zhu

In this paper, we have shown an approach for the automatic colorization of SAR backscatter images, which are usually provided in the form of single-channel gray-scale imagery. Using a deep generative model proposed for the purpose of photograph colorization and a Lab-space-based SAR-optical image fusion formulation, we are able to predict artificial color SAR images, which disclose much more information to the human interpreter than the original SAR data. Future work will aim at further adaption of the employed procedure to our special case of multi-sensor remote sensing imagery. Furthermore, we will investigate if the low-level representations learned intrinsically by the deep network can be used for SAR image interpretation in an end-to-end manner.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032053
Author(s):  
Yingru Shi ◽  
Yang Liu ◽  
Peili Xi ◽  
Wei Yang ◽  
Hongcheng Zeng

Abstract Synthetic aperture radar images play an important role in military and civilian fields, but the presence of speckle noise has an impact on subsequent tasks such as target detection and target interpretation. With the development of multi-azimuth observation mode, the obtained multi-azimuth image sequences have high similarities. Therefore, combined with multi-azimuth image sequences, a novel method of SAR image speckle noise suppression based on clustering is proposed in this paper. In this method, multi-azimuth joint filtering framework based on two-level filtering is proposed, in which pre-filtering for single image and joint filtering based on Non-local Means algorithm for multi-azimuth image are used to suppress the noise. And k-means clustering is used to optimize the search area in the multi-azimuth joint filtering, so as to effectively suppress speckle noise while retaining structural details.


Algorithms ◽  
2017 ◽  
Vol 10 (4) ◽  
pp. 116 ◽  
Author(s):  
Liangliang Li ◽  
Yujuan Si ◽  
Zhenhong Jia

Sign in / Sign up

Export Citation Format

Share Document