scholarly journals Synthetic-Aperture Radar Image Despeckling based on Improved Non-Local Means and Non-Subsampled Shearlet Transform

2020 ◽  
Vol 49 (3) ◽  
pp. 299-307
Author(s):  
Zengguo Sun ◽  
Rui Shi ◽  
Wei Wei

When Synthetic-Aperture (SAR) image is transformed into wavelet domain and other transform domains, most of the coefficients of the image are small or zero. This shows that SAR image is sparse. However, speckle can be seen in SAR images. The non-local means is a despeckling algorithm, but it cannot overcome the speckle in homogeneous regions and it blurs edge details of the image. In order to solve these problems, an improved non-local means is suggested. At the same time, in order to better suppress the speckle effectively in edge regions, the non-subsampled Shearlet transform (NSST) is applied. By combining NSST with the improved non-local means, a new type of despeckling algorithm is proposed. Results show that the proposed algorithm leads to a satisfying performance for SAR images.

Author(s):  
R. Shi ◽  
Z. Sun

GF-3 synthetic aperture radar (SAR) images are rich in information and have obvious sparse features. However, the speckle appears in the GF-3 SAR images due to the coherent imaging system and it hinders the interpretation of images seriously. Recently, Shearlet is applied to the image processing with its best sparse representation. A new Shearlet-transform-based method is proposed in this paper based on the improved non-local means. Firstly, the logarithmic operation and the non-subsampled Shearlet transformation are applied to the GF-3 SAR image. Secondly, in order to solve the problems that the image details are smoothed overly and the weight distribution is affected by the speckle, a new non-local means is used for the transformed high frequency coefficient. Thirdly, the Shearlet reconstruction is carried out. Finally, the final filtered image is obtained by an exponential operation. Experimental results demonstrate that, compared with other despeckling methods, the proposed method can suppress the speckle effectively in homogeneous regions and has better capability of edge preserving.


2016 ◽  
Vol 10 (1) ◽  
pp. 16 ◽  
Author(s):  
Shuaiqi Liu ◽  
Yu Zhang ◽  
Qi Hu ◽  
Ming Liu ◽  
Jie Zhao

SAR images have been widely used in many fields such as military and remote sensing. So the suppression of the speckle has been an important research issues. To improve the visual effect of non-local means, generalized non-local (GNL) means with optimized pixel-wise weighting is applied to shrink the coefficients of non-subsample Shearlet transform (NSST) of SAR image. The new method can optimize the weight of GNL, which not only improve the PSNR of de-noised image, but also can significantly enhance the visual effect of de-noising image.


2021 ◽  
Vol 7 ◽  
pp. e611
Author(s):  
Zengguo Sun ◽  
Guodong Zhao ◽  
Marcin Woźniak ◽  
Rafał Scherer ◽  
Robertas Damaševičius

The GF-3 satellite is China’s first self-developed active imaging C-band multi-polarization synthetic aperture radar (SAR) satellite with complete intellectual property rights, which is widely used in various fields. Among them, the detection and recognition of banklines of GF-3 SAR image has very important application value for map matching, ship navigation, water environment monitoring and other fields. However, due to the coherent imaging mechanism, the GF-3 SAR image has obvious speckle, which affects the interpretation of the image seriously. Based on the excellent multi-scale, directionality and the optimal sparsity of the shearlet, a bankline detection algorithm based on shearlet is proposed. Firstly, we use non-local means filter to preprocess GF-3 SAR image, so as to reduce the interference of speckle on bankline detection. Secondly, shearlet is used to detect the bankline of the image. Finally, morphological processing is used to refine the bankline and further eliminate the false bankline caused by the speckle, so as to obtain the ideal bankline detection results. Experimental results show that the proposed method can effectively overcome the interference of speckle, and can detect the bankline information of GF-3 SAR image completely and smoothly.


2020 ◽  
Vol 8 (1) ◽  
pp. 84-90
Author(s):  
R. Lalchhanhima ◽  
◽  
Debdatta Kandar ◽  
R. Chawngsangpuii ◽  
Vanlalmuansangi Khenglawt ◽  
...  

Fuzzy C-Means is an unsupervised clustering algorithm for the automatic clustering of data. Synthetic Aperture Radar Image Segmentation has been a challenging task because of the presence of speckle noise. Therefore the segmentation process can not directly rely on the intensity information alone but must consider several derived features in order to get satisfactory segmentation results. In this paper, it is attempted to use the fuzzy nature of classification for the purpose of unsupervised region segmentation in which FCM is employed. Different features are obtained by filtering of the image by using different spatial filters and are selected for segmentation criteria. The segmentation performance is determined by the accuracy compared with a different state of the art techniques proposed recently.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


Author(s):  
Khwairakpam Amitab ◽  
Debdatta Kandar ◽  
Arnab K. Maji

Synthetic Aperture Radar (SAR) are imaging Radar, it uses electromagnetic radiation to illuminate the scanned surface and produce high resolution images in all-weather condition, day and night. Interference of signals causes noise and degrades the quality of the image, it causes serious difficulty in analyzing the images. Speckle is multiplicative noise that inherently exist in SAR images. Artificial Neural Network (ANN) have the capability of learning and is gaining popularity in SAR image processing. Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that consists of an input layer, several hidden layers, and an output layer. We have simulated MLP with two hidden layer in Matlab. Speckle noises were added to the target SAR image and applied MLP for speckle noise reduction. It is found that speckle noise in SAR images can be reduced by using MLP. We have considered Log-sigmoid, Tan-Sigmoid and Linear Transfer Function for the hidden layers. The MLP network are trained using Gradient descent with momentum back propagation, Resilient back propagation and Levenberg-Marquardt back propagation and comparatively evaluated the performance.


Sign in / Sign up

Export Citation Format

Share Document