scholarly journals Characterization of Slow Pyrolysis Wood Vinegar and Tar from Banana Wastes Biomass as Potential Organic Pesticides

2017 ◽  
Vol 10 (3) ◽  
pp. 81 ◽  
Author(s):  
Godfrey Omulo ◽  
Sarah Willett ◽  
Jeffrey Seay ◽  
Noble Banadda ◽  
Isa Kabenge ◽  
...  

Slow pyrolysis process has been used in the recent past to yield wood vinegar from various biomass wastes with a quest to investigate their chemical composition and possible uses. This study utilizes the abundant banana wastes in Uganda including leaves, pseudostem and peels (mpologoma, kisansa and kibuzi species) in the slow pyrolysis process to yield vinegar, tar and biochar. Characterization of these banana wastes’ vinegar and tar fractions were investigated via chromatographic and physicochemical analysis. The principle compounds present in the banana wastes vinegar and tar as per percentage peak areas were acids (68.6%), alcohols (62.5%), ketones (27.6%), phenols (25.7%) and furans (21.8%). The products characterization indicate that vinegar and tar contain compounds that can be used as pesticides, termiticide, fungicides, insect repellants, anti-leaching and soil degradation agents. Thus wood vinegar and tar can have sustainable impacts on agricultural sectors and chemical industries especially for developing countries.

2014 ◽  
Vol 34 (9) ◽  
pp. 1619-1626 ◽  
Author(s):  
Xuan Liu ◽  
Zifu Li ◽  
Yaozhong Zhang ◽  
Rui Feng ◽  
Ibrahim Babatunde Mahmood

2018 ◽  
Vol 11 (2) ◽  
pp. 14 ◽  
Author(s):  
Isa Kabenge ◽  
Godfrey Omulo ◽  
Noble Banadda ◽  
Jeffrey Seay ◽  
Ahamada Zziwa ◽  
...  

Uganda is the world’s second largest producer and consumer of banana after India. This has resulted into vast quantities of banana wastes, including the leaves, pseudostem, stalks, rejected and rotten fruits and the fruit peels. This study focuses on the characterization of banana peels to yield banana peels vinegar (BPV), tar and biochar as value added products that can be useful to farmers. Dried banana peels were characterized via proximate, ultimate, lignocellulosic, thermogravimetric (TG), and calorific value analyses. The obtained results showed that the volatile matter and fixed carbon contents were 88.02% and 2.70% while carbon, nitrogen and sulphur were 35.65%, 1.94% and 20.75 ppm respectively. The hemicellulose, cellulose and lignin contents were 41.38%, 9.90% and 8.90% while the higher and lower heating values were 16.15 MJ/kg and 14.80 MJ/kg. The maximum devolatilization rate in the banana peel biomass occurred in the temperatures range of 450–550oC which was taken as the slow pyrolysis regime temperature. The high levels of fixed carbon, volatile matter and ash contents were strong indicators that banana wastes are adequate feedstock for pyrolysis work to yield bio-infrastructure products. Similarly, the lignin, cellulose and hemicellulose fractions had significant correlation between the biomass heating values and the eventual chemical compounds present BPV and biochar. The characterization properties of the banana peels are akin to the leaves and pseudostem and thus are suitable for pyrolysis process.


2021 ◽  
pp. 125567
Author(s):  
B. Babinszki ◽  
Z. Sebestyén ◽  
E. Jakab ◽  
L. Kőhalmi ◽  
J. Bozi ◽  
...  

Fuel ◽  
2020 ◽  
Vol 261 ◽  
pp. 116420 ◽  
Author(s):  
C. Setter ◽  
F.T.M. Silva ◽  
M.R. Assis ◽  
C.H. Ataíde ◽  
P.F. Trugilho ◽  
...  
Keyword(s):  

2017 ◽  
Vol 37 (5) ◽  
pp. 1955-1960 ◽  
Author(s):  
Franziska Uhlmann ◽  
Christian Wilhelmi ◽  
Stephan Schmidt-Wimmer ◽  
Steffen Beyer ◽  
Claudio Badini ◽  
...  

2007 ◽  
Vol 253 (10) ◽  
pp. 4560-4565 ◽  
Author(s):  
D.S. Todorovsky ◽  
R.V. Todorovska ◽  
M.M. Milanova ◽  
D.G. Kovacheva

2002 ◽  
Vol 422 (1-2) ◽  
pp. 73-79 ◽  
Author(s):  
Kenichi Tsukada ◽  
Tsutomu Nagahama ◽  
Mitsugu Sohma ◽  
Iwao Yamaguchi ◽  
Takaaki Manabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document