volatile matter
Recently Published Documents


TOTAL DOCUMENTS

807
(FIVE YEARS 290)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Sophia Nawaz Gishkori ◽  
Ghulam Abbas ◽  
Aqeel Ahmad Shah ◽  
Sajjad Ur Rahman ◽  
Muhammad Salman Haider ◽  
...  

In this study we report biofuel potential in waste cake obtained from oil refinery. The sample was analyzed for its calorific value using auto bomb calorimeter (LECO AC-500), proximate analysis using Thermogravimetric analyzer (LECO 701) and elemental analysis using CHNS analyzer (LECO Tru-Spec). The elemental analysis of dry waste cake vs wet cake depicted the percentage composition of carbon (49.8%, 40.8%), hydrogen (7.9%, 6.0%), nitrogen (2.8%, 1.9%), Sulphur (1.9%, 0.5%) and oxygen content (37.6%, 40.4%). As for as the thermal degradation behavior of dry and wet cake in TGA is concerned, higher moisture contents (68.50%) found in wet cake and lower in dry cake (40.1%). Whereas the volatile matter in dry cake (30.9%) and low volatile in wet cake (14.3%). Similarly, %age of ash become high in dry cake (17.3%) and low in wet cake (5.11%). The results reflected that higher heating value of dry waste cake is higher (22.5 MJ/kg) than wet waste cake (20.5 MJ/kg) and commonly used sugarcane bagasse (17.88 MJ/kg).


2022 ◽  
Vol 52 (2) ◽  
Author(s):  
Luiz Augusto da Silva Correia ◽  
Janduir Egito da Silva ◽  
Guilherme Quintela Calixto ◽  
Dulce Maria de Araújo Melo ◽  
Renata Martins Braga

ABSTRACT: This research valorized Pachira aquatica Aubl.’s fruit shells (PAS) through its energetic characterization and flash pyrolysis for biofuels or chemicals production. The characterization was performed through proximate and ultimate analysis, bulk density, higher heating value (HHV), hemicellulose, cellulose and lignin content, thermogravimetric analysis and absorption spectra in the infrared region obtained by Fourier-transform infrared spectroscopy technique (FTIR). The analytical flash pyrolysis was performed at 500°C in a Py-5200 HP-R coupled to a gas chromatograph (Py-GC/MS). The PAS biomass presents potential for thermochemical energy conversion processes due to its low moisture and ash content, 76.90% of volatile matter, bulk density of 252.6 kg/m3 and HHV of 16.24 MJ/kg. Flash pyrolysis products are mostly phenols or light organic acids derived from the decomposition of polysaccharides. Results confirmed the potential of PAS to produce bio-phenolics, such as 4-methoxyphenol which is an important active ingredient for skin depigmentation used in drugs and cosmetics, and as phenolic extract that can be used as a precursor to resins, applications that convert this forest waste into bio products for industry into a green circular economy.


Paliva ◽  
2021 ◽  
pp. 141-148
Author(s):  
Hana Lisá ◽  
Martin Lisý ◽  
Patrik Elbl ◽  
Marek Baláš ◽  
Tereza Zlevorová ◽  
...  

The characteristic properties of non-wood biomass used in combustion processes are monitored, such as water content, ash, volatile matter. Biomass is usually not homogenous and of suitable dimensions for these determinations. This is the reason for the necessary adjustment of samples for analysis. But modifying the samples may change their properties. In this publication, the influence of the grinding process in a rotor mill on the content of water, volatile matter and ash in non-wood biomass samples was studied. Samples of flax, Crambe abyssinica, amaranth and rye were analyzed. All analyses showed moisture loss from the sample during grinding and in the case of flax, the loss of volatile matter was observed. It means the rotor mill is suitable for sample preparation prior to analysis. But for oil plants it is necessary to choose another mill or adjustment method.


2021 ◽  
Vol 38 (2) ◽  
pp. 115-121
Author(s):  
Manabendra Nath

Coal samples of Eocene age (Shella Formation) from four different mines (Bapung, Jaintia, Sutunga, and Lakadong) of the Jaintia Hills of Meghalaya, Northeast India, were collected and investigated to observe the sulphur content and to understand the palaeoenvironment, utilisation prospects, and environmental impact. The study reveals that these coal samples contain sulphur in higher concentration (4.46% to 7.26%) both organic and inorganic forms. There are 3 coal seams exposed in the area. The organic sulphur is higher (2.53%-5.49%) than the inorganic forms (1.26%-1.77%). The upper seam is found to contain higher concentration of sulphur than the lower seam. Intra seam pyritic sulphur also shows an upward increasing trend. The high sulphur content in the coal seams suggests the marine influence in the peat-forming swamps. These coals are classified as High Sulphur coal (>1%) which is the main obstacle in the utilization although high volatile matter and hydrogen content strongly suggest that these coals are good for liquefaction. Moreover, during coal combustion emissions of sulphur dioxide produce acid rain, affecting the environment of the mine areas.  


2021 ◽  
Vol 45 (6) ◽  
pp. 477-484
Author(s):  
Mohd Faizal Hasan ◽  
Bemgba Bevan Nyakuma ◽  
Mohd Rosdzimin Abdul Rahman ◽  
Norazila Othman ◽  
Norhayati Ahmad ◽  
...  

In the present study, torrefaction of palm kernel shell (PKS) and petcoke blends was performed for the production of solid biofuels with high energy density. The torrefaction process was performed for mixtures with various mixing ratios (by weight) from 90:10 to 60:40 (PKS:petcoke). For torrefaction under various temperatures of 250℃ to 300℃, the mixing ratio of 60:40 was used. Meanwhile, residence time and nitrogen flow rate were fixed at 30 minutes and 1 l/min, respectively. In general, the fixed carbon and ash contents increased, while the moisture and volatile matter contents decreased after torrefaction. It has been elucidated that mass yield is a dominant factor that affects the energy yield of torrefied mixtures rather than the higher heating value (HHV) ratio. Based on the energy yield and ultimate analysis, it was found that a higher amount of petcoke and higher temperature give better performance, thus causing the torrefied mixture to become very close to coals region in Van Krevelen diagram. In this case, the mixture with a mixing ratio of 60:40 torrefied under the temperature of 300℃ gives the best performance. It was also found that this mixture is thermally stable than the mixture torrefied at 250℃.


2021 ◽  
Vol 1 (1) ◽  
pp. 032-038
Author(s):  
J Sani ◽  
T Abubakar

Pyrolysis of the algae (chlorophyceac) was carried out using fixed bed reactor at 4500C. The mass balance of the pyrolysed algae were liquid fraction (oil) (10%), gaseous product (11%), solid product (char) (79%) and extent of conversion (21%. The proximate analysis of powdered sample was carried out in accordance with the official method of analytical chemistry (AOAC). The moisture content, ash content, volatile matter and fixed carbon determined were 3 + 0.33, 70.3 + 0.5, 6.3 + 0.3 and 20.2 + 0.07 respectively. The result obtained indicate that algae (chlorophyceae) could be used as feedstock for generation of pyrolysed oil which could probably be upgraded to fuel for both domestic and industrial purposes.


2021 ◽  
Vol 25 (9) ◽  
pp. 1707-1713
Author(s):  
O.O.E. Onawumi ◽  
A.A. Sangoremi ◽  
O.S. Bello

This study was carried out to prepare groundnut shell (GS) and eggshell (ES) into activated carbon (AC) and characterize the AC using Association of Official Analytical Chemists (AOAC) and American Standard for Testing and Materials (ASTM) methods. The AC produced was characterized for: pH, moisture content, volatile matter, ash content, fixed carbon, bulk density and surface area. Surface functional groups and surface morphology were also determined using Fourier Transformed Infrared (FT-IR) and Scanning Electron Microscope (SEM) respectively. The ranges of the following results were achieved for the biomasses: Groundnut shell Activated Carbon (GSAC) and Eggshell Activated Carbon (ESAC) respectively: pH (6.80±0.101−7.80±0.011); moisture content (14.10±0.101−12.90±.110%); volatile matter (9.20±0.112−9.90±0.012%); ash content (8.98±0.111−5.80±0.111%); fixed carbon (67.70±0.010−71.40±110%); bulk density (370.00±0.000−380.00−0.000 g/L); surface area (880.00±0.100−800.00±0.000 m2/g). The agro-wastes have high carbon contents and low inorganic which make them viable adsorbents. FT-IR analysis revealed the presence of oxygen surface complexes such as carbonyls and OH groups on the surface of the ACs in addition to good pore structures from SEM studies revealed that the agro-wastes could be good precursors for ACs production. The overall results showed that the AC produced from the agro-wastes can be optimally used as good and effective adsorbents, thereby ensuring cheaper, readily available and affordable ACs for the treatment of effluent, waste water and used oils.


2021 ◽  
Vol 9 (3) ◽  
pp. 282
Author(s):  
Fonny Rianawati ◽  
Zainal Abidin ◽  
Muhammad Naparin

This study aims to conduct a study of the quality value of briquettes made from mixing straw and rice husks which include a flame test and combustion rate which is expected to be used to educate people around the forest by providing innovation and technology regarding the use of post-harvest waste. The results showed that the value of the quality of briquettes made from variations in the mixing of straw and rice husks including the flame test of the combustion rate obtained results, for treatment A (100% straw) of 0.68 gr/minute, treatment B (100% husk) of 0 ,57 gr/minute, treatment C (Husk 75% + Straw 25%) was 0.40 gr/minute, treatment D (Husk 25% + Straw 75%) was 0.46 r/minute and treatment E (Husk 50% + Straw 50%) of 0.43 gr/minute. The value of the flame to boiling time for treatment A = 38.62 minutes, treatment B = 31.05, treatment C = 23.22 minutes, treatment D = 36.05 and treatment E = 27.95 minutes. Density values of all treatments, and the water content for treatment B and treatment C can meet SII. While other parameters: ash content, volatile matter, bound carbon and calorific value still cannot meet the standards, so it is recommended to carry out further research with other variations of treatment, in order to obtain briquettes with quality that can meet the standards.


2021 ◽  
Vol 33 (4) ◽  
pp. 107-117
Author(s):  
Pedro P. Ugarte-Espinoza ◽  
Victor Delgado-Soriano ◽  
Lorenzo Estivi ◽  
Alyssa Hidalgo ◽  
Gloria Pascual-Chagman

In order to optimize the screw-press extraction conditions of oil from goldenberry (Physalis peruviana L.) seeds obtained from nectar processing waste, a face centered design was applied. The oil was extracted at different temperatures (60, 80, and 100°C) and seed moisture contents (8, 10, and 12%). Oil recovery (OR) increased and residual oil in the cake decreased significantly as moisture content and temperature were reduced; oil moisture and volatile matter as well as acid value, K232, K268, and p-anisidine, respectively, decreased proportionally with the moisture extraction. Thus, the highest OR (86.4%) and the best quality were obtained at 8% moisture content and 60°C pressing temperature. Under these conditions, the extracted oil presented high linoleic acid (76.0%), iodine value (140.0 mg I2/g), and refractive index (1.4769). The oil stability index, measured by Rancimat, varied from 3.65 h (120°C) to 14.87 h (100°C); the predicted shelf life at 25°C was 120.4 days and the activation energy was 85.6 kJ/mol. The results highlighted that screw-pressing of goldenberry seeds provides quality oil without employing polluting and hazardous solvents.


Sign in / Sign up

Export Citation Format

Share Document