scholarly journals An Intelligent Electro-Hydraulic Servo Drive Positioning

2011 ◽  
Vol 57 (05) ◽  
pp. 394-404 ◽  
Author(s):  
Edvard Detiček ◽  
Uroš Župerl
Keyword(s):  
2013 ◽  
Vol 721 ◽  
pp. 497-500
Author(s):  
Guo Jin Chen ◽  
Jing Ni ◽  
Ting Ting Liu ◽  
Ming Xu

Aiming at the lower performance, accuracy and efficiency of the existing motion control process for the traditional broaching machine, the paper studies the high-performance dual-hydraulic synchronous servo drive control technology. The synchronous electro-hydraulic servo system forms the closed loop control by the detection and feedback of the output quantity. It eliminates and restrains largely the influence of the adverse factors to obtain the high-precision synchronous driving performance. The numerical control system based on the real-time error compensation and the intelligent control to the auxiliary machinery is developed. It is used for the CNC broaching machine to make the steady-state synchronous displacement error of the double cylinders be ≤ 0.5mm.


2013 ◽  
Vol 675 ◽  
pp. 86-90
Author(s):  
Guo Jin Chen ◽  
Jing Ni ◽  
Tin Tin Liu ◽  
Hui Peng Chen ◽  
Ming Xu

Aiming at the cutting for various kinds of material, in order to solve the problems that the present large band saw equipment at home is poor in the synchronization of the sawing feed and is lack of the dedicated NC system, the paper introduces the electro-hydraulic servo drive and digital control technologies, researches the synchronous servo drive and cutting force feedback control technologies, and develops the sawing machine’s control system based on the above technologies. The NC system has been applied in the CNC band saw equipment of the large Portal style. The saw frame uses the structure driven synchronously by the dual hydraulic cylinders in order to guarantee the accuracy of the feed motion. The control system driven by the electro-hydraulic servo synchronization detects the implementation of a two cylinders and does the displacement feedback to achieve the movement synchronization on both ends of the portal frame using the synchronous control strategy. That ensures the movement accuracy for the CNC band saw equipment of the large Portal style and improves the cutting accuracy and efficiency of the equipment.


Author(s):  
Javier Freire ◽  
Esteve Codina ◽  
Munir Khamashta

Understanding the behavior of system with flexible elements is increasingly important in modern day technology. Reducing the mass of machine elements leads to a remarkable improvement in dynamic performance. However, a loss of precision also occurs with such an increase in flexibility. In order to arrive at a better understanding of systems with flexible elements, we are investigating the particular behavior of a hydraulic servo driven rotating flexible beam with the aim of obtaining a methodology that could be applied to a real application. To investigate this behavior, a set of models has been developed. In this paper, a theoretical model, using classical modal analysis methodology, is presented. The flexible beam is modeled in a standard way and the hydraulic servo drive is modeled as a boundary condition. Only normal modes will be investigated. This approach allows considering the servo proportional constant and the cylinder mass. It will be show that the servo proportional constant has low influence in the system eigen frequencies. The theoretical model predictions are validated experimentally.


Author(s):  
Matti Linjama

This article studies a digital hydraulic servo drive driven by a variable speed electric servomotor. Digital displacement control is implemented by using a two-port digital hydraulic power management system having six pistons and 18 on/off control valves. The first port of the digital hydraulic power management system controls the cylinder speed, while the second port is connected to a hydraulic accumulator. The peak power is taken from the accumulator, and the electric servomotor supplies only the average power into the system. An experimentally validated simulation model is used, and the results show a combination of adequate controllability and excellent energy efficiency. The estimated reduction in the size of the electric motor is 57%.


Author(s):  
Hamid Roozbahani ◽  
Konstantin Frumkin ◽  
Heikki Handroos

Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for a hydraulic servo system. The modeling of the hydraulic servo system were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™. In this study, the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial were applied. In addition, an intelligent adaptive control algorithm and system model including its nonlinearities was developed to solve Lyapunov’s equation. Developed algorithm works properly and considered plant is met requirement of functioning with. The results shows that the developed adaptive control algorithm increases system performance in use devices significantly and might be used for correction of system’s behavior and dynamics.


2019 ◽  
Vol 19 (4) ◽  
pp. 122-134
Author(s):  
Andrzej MILECKI ◽  
Dominik RYBARCZYK

In the paper the investigations performed at the Division of Mechtronic Devices at Poznan University of Technology in the area of application of both: smart materials in electro-hydraulic and electro-pneumatic valves, and new methods to control of hydraulic servo drives, are presented. In a first part the piezo bender actuator is shortly described and its application in servo valve is proposed. This actuator replaced the torque motor in the available on the market servo valve. The new valve simulation model is proposed. The simulation and investigations results of the servo valve with the piezo bending actuator are included. In the next part of the paper the application of piezo tube actuator in flapper-nozzle pneumatic valve is described. The test stand and investigations results are presented. Later, in the article, the Model Following Control (MFC) and Fractional order Control (FoC) methods are described. Their application in control of electrohydraulic servo drive is proposed. Some investigations results are included in the paper, showing the advantages of those control methods.


Sign in / Sign up

Export Citation Format

Share Document