scholarly journals Severe perinatal hypophosphatasia case with a novel mutation

2022 ◽  
Vol 120 (1) ◽  
Keyword(s):  
2011 ◽  
Vol 42 (S 01) ◽  
Author(s):  
GC Korenke ◽  
M Wagner ◽  
A Maak ◽  
G Rosenberger ◽  
K Kutsche

2016 ◽  
Vol 47 (S 01) ◽  
Author(s):  
A. Dieckmann ◽  
F. Majer ◽  
H. Hulkova ◽  
M. Farr ◽  
T. Kalina ◽  
...  

1996 ◽  
Vol 76 (02) ◽  
pp. 253-257 ◽  
Author(s):  
Takeshi Hagiwara ◽  
Hiroshi Inaba ◽  
Shinichi Yoshida ◽  
Keiko Nagaizumi ◽  
Morio Arai ◽  
...  

SummaryGenetic materials from 16 unrelated Japanese patients with von Willebrand disease (vWD) were analyzed for mutations. Exon 28 of the von Willebrand factor (vWF) gene, where point mutations have been found most frequent, was screened by various restriction-enzyme analyses. Six patients were observed to have abnormal restriction patterns. By sequence analyses of the polymerase chain-reaction products, we identified a homozygous R1308C missense mutation in a patient with type 2B vWD; R1597W, R1597Q, G1609R and G1672R missense mutations in five patients with type 2A; and a G1659ter nonsense mutation in a patient with type 3 vWD. The G1672R was a novel missense mutation of the carboxyl-terminal end of the A2 domain. In addition, we detected an A/C polymorphism at nucleotide 4915 with HaeIII. There was no particular linkage disequilibrium of the A/C polymorphism, either with the G/A polymorphism at nucleotide 4391 detected with Hphl or with the C/T at 4891 detected with BstEll.


1992 ◽  
Vol 67 (01) ◽  
pp. 063-065 ◽  
Author(s):  
Sherryl A M Taylor ◽  
Jacalyn Duffin ◽  
Cherie Cameron ◽  
Jerome Teitel ◽  
Bernadette Garvey ◽  
...  

SummaryChristmas disease was first reported as a distinct clinical entity in two manuscripts published in 1952 (1, 2). The eponym associated with this disorder, is the surname of the first patient examined in detail and reported by Biggs and colleagues in a paper describing the clinical and laboratory features of seven affected individuals (3). This patient has severe factor IX coagulant deficiency (less than 0.01 units/ml) and no detectable circulating factor IX antigen (less than 0.01 units/ml). Coding sequence and splice junctions of the factor IX gene from this patient have been amplified in vitro through the polymerase chain reaction (PCR). One nucleotide substitution was identified at nucleotide 30,070 where a guanine was replaced by a cytosine. This mutation alters the amino acid encoded at position 206 in the factor IX protein from cysteine to serine. The non conservative nature of this substitution, the absence of this change in more than 200 previously sequenced factor IX genes and the fact that the remainder of the coding region of this gene was normal, all provide strong circumstantial evidence in favour of this change being the causative mutation in this patient. The molecular characterization of this novel mutation in the index case of Christmas disease, contributes to the rapidly expanding body of knowledge pertaining to Christmas disease pathogenesis.


2006 ◽  
Vol 37 (S 1) ◽  
Author(s):  
C Bellini ◽  
D Cassandrini ◽  
C Savioli ◽  
D Massocco ◽  
M Marasini ◽  
...  
Keyword(s):  

2014 ◽  
Author(s):  
Adi Reich ◽  
Charles R Farber ◽  
Aileen M Barnes ◽  
Patricia Becerra ◽  
Frank Rauch ◽  
...  

2014 ◽  
Author(s):  
Doo-Man Kim ◽  
Seung Yang ◽  
Juri Park ◽  
Ho Young Son
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document