scholarly journals Effect of the aggregation of multi-cohort mixed stands on modeling forest ecosystem carbon stocks

Silva Fennica ◽  
2008 ◽  
Vol 42 (4) ◽  
Author(s):  
Thomas Wutzler
2021 ◽  
Vol 97 (02) ◽  
pp. 168-178
Author(s):  
Michael T. Ter-Mikaelian ◽  
Stephen J. Colombo ◽  
Jiaxin Chen

We used models to project forest carbon stocks for a series of harvesting scenarios for 29 boreal forest management units totalling 23.3 million ha in Ontario, Canada. Scenarios evaluated for 2020 to 2050 ranged from a no harvesting option to annual harvesting of 2% of the total merchantable volume present in 2020. For each scenario, we estimated the following carbon quantities: (a) forest ecosystem carbon stocks, (b) sum of carbon stocks in forest ecosystem and harvested wood products (HWP) minus emissions associated with HWP production and decomposition, and (c) net greenhouse gas (GHG) effects of harvesting estimated as (b) combined with emissions avoided by substituting HWP for non-wood materials. The average of each carbon quantity for 2020 to 2050 was linearly dependent on the annual harvest volume. The developed relationships were used to estimate harvest volumes for which the three carbon quantities would equal equilibrium forest ecosystem carbon stocks for a pre-suppression natural disturbance cycle. These estimates indicate the range of harvest volumes for which resulting carbon stocks would equal or exceed those in an unmanaged forest. Also discussed are possible criteria for determining annual harvest volume.


2019 ◽  
Vol 14 (12) ◽  
pp. 125015 ◽  
Author(s):  
Andreas Magerl ◽  
Julia Le Noë ◽  
Karl-Heinz Erb ◽  
Manan Bhan ◽  
Simone Gingrich

2021 ◽  
pp. 1-11
Author(s):  
Michael T. Ter-Mikaelian ◽  
Stephen J. Colombo ◽  
Jiaxin Chen

We used models to project forest carbon stocks for a series of harvesting scenarios for 29 boreal forest management units totalling 23.3 million ha in Ontario, Canada. Scenarios evaluated for 2020 to 2050 ranged from a no harvesting option to annual harvesting of 2% of the total merchantable volume present in 2020. For each scenario, we estimated the following carbon quantities: (a) forest ecosystem carbon stocks, (b) sum of carbon stocks in forest ecosystem and harvested wood products (HWP) minus emissions associated with HWP production and decomposition, and (c) net greenhouse gas (GHG) effects of harvesting estimated as (b) combined with emissions avoided by substituting HWP for non-wood materials. The average of each carbon quantity for 2020 to 2050 was linearly dependent on the annual harvest volume. The developed relationships were used to estimate harvest volumes for which the three carbon quantities would equal equilibrium forest ecosystem carbon stocks for a pre-suppression natural disturbance cycle. These estimates indicate the range of harvest volumes for which resulting carbon stocks would equal or exceed those in an unmanaged forest. Also discussed are possible criteria for determining annual harvest volume.


2017 ◽  
Vol 32 (8) ◽  
pp. 717-725 ◽  
Author(s):  
Kristina Mjöfors ◽  
Monika Strömgren ◽  
Hans-Örjan Nohrstedt ◽  
Maj-Britt Johansson ◽  
Annemieke I. Gärdenäs

Author(s):  
Seppo Kellomäki ◽  
Hannu Väisänen ◽  
Miko U F Kirschbaum ◽  
Sara Kirsikka-Aho ◽  
Heli Peltola

Abstract Norway spruce (Picea abies Karst. (L.)) in the boreal zone can be managed as even-aged or uneven-aged stands, or be grown with no management at all. Here, we investigated how these management options affect carbon dynamics, particularly the carbon stocks in the forest ecosystem (trees and soil), and albedo, and their combined effect on radiative forcing compared to a reference case, clear-cut site before planting seedlings. This allowed us to assess the potential of different management regimes to mitigate global warming. We ran long-term simulations under the current climate on a sub-mesic site in central Finland (62oN) using an eco-physiological forest-ecosystem model. Compared to even-aged management, no management (old-growth forest) increased ecosystem carbon stocks by 47 per cent and decreased albedo by 15 per cent, whereas uneven-aged management reduced ecosystem carbon stocks by 16 per cent and increased albedo by 10 per cent. Only the no management option resulted in a significant net cooling effect whereas for even-aged and uneven-aged management, the opposing effects of changes in albedo and carbon stocks largely cancelled each other with little remaining net effect. On the other hand, the latter one even made a small net warming contribution. Overall, maintaining higher ecosystem carbon stocks implied the larger cooling benefits. This was evident even though lower albedo enhanced radiation absorption, and thus warming. Increasing use of the no management option by forest owners may require proper incentives such as compensation for lost harvest incomes.


2018 ◽  
Vol 28 (6) ◽  
pp. 973-985 ◽  
Author(s):  
Hengxing Xiang ◽  
Mingming Jia ◽  
Zongming Wang ◽  
Lin Li ◽  
Dehua Mao ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 342 ◽  
Author(s):  
Bin Yang ◽  
Wenhui Zhang ◽  
Yanlei Lu ◽  
Weiwei Zhang ◽  
Yanan Wang

Research Highlights: This study comprehensively revealed the carbon sequestration characteristics of secondary forests in the central Loess Plateau during vegetation succession. Background and Objectives: The secondary succession of Loess Plateau forests is of great significance in global climate change, but their carbon storage dynamics are poorly understood. The study objectives were to clarify the pattern of changes and contribution level of carbon stocks in various components of ecosystem during succession. Materials and Methods: We selected 18 plots for Pinus tabuliformis Carr. forest at the early stage of succession, 19 for pine-broadleaved mixed forest at the middle stage, and 12 for Quercus-broadleaved mixed forest at the climax stage to determine the tree, shrub, herb, fine root, litter, coarse wood debris (CWD), and soil carbon stocks. Results: Ecosystem carbon stocks increased from 160.73 to 231.14 Mg·ha−1 with the succession stages. Vegetation (including tree, shrub and herb) and soil were the two largest carbon pools, and carbon was mainly sequestrated in tree biomass and shallow soil (0–50 cm). In the early stage, soil contributed more carbon stocks to the ecosystem than vegetation, but with succession, the soil contribution decreased while vegetation contribution increased, finally reaching a balance (46.78% each) at the climax stage. Fine root, litter, and CWD contributed little (average 6.59%) to ecosystem carbon stocks and were mainly involved in the turnover of vegetation biomass to soil carbon. Conclusions: Our results provide direct evidence for carbon sequestration of secondary forests on the Loess Plateau. The dynamic results of carbon storage provide an important basis for forest restoration management under climate change.


2021 ◽  
Vol 192 ◽  
pp. 110213
Author(s):  
Clint Cameron ◽  
Bridget Kennedy ◽  
Senilolia Tuiwawa ◽  
Nick Goldwater ◽  
Katy Soapi ◽  
...  

2019 ◽  
Vol 447 ◽  
pp. 67-76 ◽  
Author(s):  
Thomas Nord-Larsen ◽  
Lars Vesterdal ◽  
Niclas Scott Bentsen ◽  
Jørgen Bo Larsen

Sign in / Sign up

Export Citation Format

Share Document