scholarly journals Growth of Douglas-fir, lodgepole pine, and ponderosa pine seedlings underplanted in a partially-cut, dry Douglas-fir stand in south-central British Columbia

2006 ◽  
Vol 82 (5) ◽  
pp. 723-732 ◽  
Author(s):  
Alan Vyse ◽  
Christine Ferguson ◽  
Suzanne W Simard ◽  
Tamaki Kano ◽  
Pasi Puttonen

The effects of partial cutting on seedling growth of three conifer species were studied at a very dry, hot interior Douglas-fir site near Kamloops, British Columbia. Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco), lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.), and ponderosa pine (Pinus ponderosa Dougl. ex. P. & C. Laws.) seedlings were planted in mechanically prepared 50 cm × 50 cm patches under different canopy conditions created by harvesting 60% of the original stand volume. The prepared areas were selected to represent canopy closures from open to closed, slopes from 0 to 60%, and all aspects. After six years, survival of Douglas-fir, lodgepole pine and ponderosa pine was 78%, 76% and 70%, respectively. Light level had a strong influence on survival and condition. Growth of all species increased linearly with light, and was greatest for lodgepole pine, followed by ponderosa pine and Douglas-fir. Multiple regression analysis showed that six-year seedling size was most significantly affected by total light, and only occasionally by aspect, slope, or crown closure. The best models explained 53%, 47% and 42% of the variation in diameter of lodgepole pine, ponderosa pine, and Douglas-fir, respectively. Natural abundance 13C was positively correlated with light and soil moisture availability, reflecting higher photosynthetic capacity of all species in the wetter, open canopy conditions. Patterns in isotopic discrimination also indicated greater water use efficiency of Douglas-fir and ponderosa pine than lodgepole pine under low light conditions. Underplanting stands thinned to a basal area of less than 15m2 per ha offers a solution to regeneration difficulties on hot, dry Interior Douglas-fir sites. Key words: partial cutting, Douglas-fir, lodgepole pine, ponderosa pine, light, soil moisture, 13C, growth, survival, Opax Mountain Silvicultural Systems Project

2019 ◽  
Vol 49 (11) ◽  
pp. 1471-1482
Author(s):  
Woongsoon Jang ◽  
Bianca N.I. Eskelson ◽  
Louise de Montigny ◽  
Catherine A. Bealle Statland ◽  
Derek F. Sattler ◽  
...  

This study was conducted to quantify growth responses of three major commercial conifer species (lodgepole pine (Pinus contorta Douglas ex Loudon var. latifolia Engelm. ex S. Watson), interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco), and spruce (white spruce (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex. Engelm. × Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carrière))) to various fertilizer blends in interior British Columbia, Canada. Over 25 years, growth-response data were repeatedly collected across 46 installations. The fertilizer blends were classified into three groups: nitrogen only; nitrogen and sulfur combined; and nitrogen, sulfur, and boron combined. The growth responses for stand volume, basal area, and top height were calculated through absolute and relative growth rate ratios relative to a controlled group. Fertilizer blend, inverse years since fertilization, site index, stand density at fertilization, and their interactions with the fertilizer blend were used as explanatory variables. The magnitude and significance of volume and basal area growth responses to fertilization differed by species, fertilizer-blend groups, and stand-condition variables (i.e., site index and stand density). In contrast, the response in top height growth did not differ among fertilization blends, with the exception of the nitrogen and sulfur fertilizer subgroup for lodgepole pine. The models developed in this study will be incorporated into the current growth and yield fertilization module (i.e., Table Interpolation Program for Stand Yields (TIPSY)), thereby supporting guidance of fertilization applications in interior forests in British Columbia.


1991 ◽  
Vol 69 (1) ◽  
pp. 117-121 ◽  
Author(s):  
R. Mark Brigham

I used radiotelemetry to study the roosting and foraging behaviour of big brown bats (Eptesicus fuscus) in south central British Columbia. Maternity colonies were found in hollows of dead ponderosa pine trees (Pinus ponderosa) and colony members were not loyal to specific trees. Individuals consistently foraged above a 300-m stretch of the Okanagan River, travelling 1.8 km on average from day roosts to the foraging area. There were significant differences in the duration of foraging bouts among different sex and age-classes. The results are compared with data collected in a similar manner for a population in Ontario, where, in contrast to British Columbia, E. fuscus were highly loyal to man-made roost structures and on average travelled less than 1 km to foraging sites that varied nightly. I suggest that the marked difference in both roosting and foraging behaviour is due to differences in the availability and structure of roosts and in the distribution of insect prey.


2006 ◽  
Vol 36 (7) ◽  
pp. 1758-1769 ◽  
Author(s):  
Rochelle Campbell ◽  
Dan J Smith ◽  
André Arsenault

Western spruce budworm (Choristoneura occidentalis Freeman) is a native defoliator of forests in the interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) forests of British Columbia, Canada. Dendrochronological techniques and the software program OUTBREAK were used to reconstruct a defoliation history of Douglas-fir for 19 forest sites near Kamloops in central British Columbia. By comparing the radial-growth response of ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) with that of Douglas-fir growing in nearby but separate stands, eight western spruce budworm outbreaks over the past 300 years were distinguished. Although there is considerable variation in the timing and duration of these western spruce budworm events at the stand level, synchronous outbreaks have occurred in approximately 30- to 43-year cycles. Spectral analyses of a composite time series from all stands showed similar and consistent intervals between outbreaks. Climatic variation appears to have been important to budworm outbreaks in the 20th century. Notable outbreaks tended to occur during years with average spring air temperatures following winters with less than average precipitation. Based on this finding, it is proposed that with high over-winter survival rates and a longer growing season, the duration of outbreaks may increase in the future.


2001 ◽  
Vol 31 (2) ◽  
pp. 246-260 ◽  
Author(s):  
Hua Chen ◽  
Mark E Harmon ◽  
Robert P Griffiths

Decomposition of woody roots in Sitka spruce (Picea sitchensis (Bong.) Carrière), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and ponderosa pine (Pinus ponderosa P. Laws. ex C. Laws.) dominated forests in Oregon, U.S.A. was studied using a chronosequence. Roots of five coniferous species were excavated from stumps with ages up to 46 years old. In order of increasing decomposition rate constant (k) the species were Douglas-fir < Sitka spruce < lodgepole pine (Pinus contorta Dougl. ex Loud.) < western hemlock (Tsuga heterophylla (Raf.) Sarg) < ponderosa pine. Variation in the proportion of bark, wood, and resin cores was correlated to these differences. Root wood showed the highest k, root bark the second, and resin cores the lowest. The occurrence of resin cores in woody roots of Douglas-fir, Sitka spruce, and lodgepole pine greatly slowed the decomposition of these species. White rots occurred frequently in ponderosa pine and lodgepole pine, whereas brown rots mostly appeared in Douglas-fir and Sitka spruce. Species with white rot had a higher k than those with brown rot. Decomposing woody roots started to release N after 20–30% mass loss, a point when the dead root C/N ratio averaged 140.


1999 ◽  
Vol 9 (4) ◽  
pp. 223 ◽  
Author(s):  
Richard Everett ◽  
John Lehmkuhl ◽  
Richard Schellhaas ◽  
Pete Ohlson ◽  
David Keenum ◽  
...  

Snag numbers and decay class were measured on a chronosequence of 26 wildfires (ages 1-81 years) on the east slope of the Cascade Range in Washington. Snag longevity and resultant snag densities varied spatially across burns in relation to micro-topographic position. Longevity of snags < 41cm dbh was greater for thin-barked Engelmann spruce (Picea engelmannii), subalpine fir (Abies lasiocarpa) and lodgepole pine (Pinus contorta) than thick-barked Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). With larger diameter snags, however, Douglas-fir persisted longer than Engelmann spruce. The time period required for recruitment of soft snags > 23 cm dbh was estimated to exceed snag longevity for ponderosa pine, Englemann spruce, lodgepole pine, and subapline fir, causing an “on-site gap” in soft snags for these species. Snags of Douglas-fir ≥ 41 cm dbh stood for a sufficient time (40% standing after 80 years) to potentially overlap the recruitment of soft snags ≥ 23 cm dbh from the replacement stand. Providing continuity in soft snags following stand-replacement events would require a landscape-scale perspective, incorporating adjacents stands of different ages or disturbance histories. Results suggest that standards and guidelines for snags on public forest lands need to be sufficiently flexible to accomodate both disturbance and stand development phases and differences in snag longevity among species and topographic positions.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Teresa A. Newsome ◽  
Jean L. Heineman ◽  
Amanda F. Linnell Nemec

Critical height ratios for predicting competition between trembling aspen and lodgepole pine were identified in six juvenile stands in three south-central British Columbia ecosystems. We used a series of regression analyses predicting pine stem diameter from the density of neighbouring aspen in successively shorter relative height classes to identify the aspen-pine height ratio that maximizedR2. Critical height ratios varied widely among sites when stands were 8–12 years old but, by age 14–19, had converged at 1.25–1.5. MaximumR2values at age 14–19 ranged from 13.4% to 69.8%, demonstrating that the importance of aspen competition varied widely across a relatively small geographic range. Logistic regression also indicated that the risk of poor pine vigour in the presence of aspen varied between sites. Generally, the degree of competition, risk to pine vigour, and size of individual aspen contributing to the models declined along a gradient of decreasing ecosystem productivity.


Weed Science ◽  
1982 ◽  
Vol 30 (1) ◽  
pp. 98-101 ◽  
Author(s):  
John C. Tappeiner ◽  
Steven R. Radosevich

An experiment was established in 1961 to determine the influence of bearmat (Chamaebatia foliolosa Benth.) competition on ponderosa pine (Pinus ponderosa Laws.) survival and growth. Ponderosa pine seedlings were planted in bearmat which was: (A) untreated, (B) sprayed with a mixture of 2,4-D [(2,4-dichlorophenoxy)acetic acid] and 2,4,5-T [(2,4,5-trichlorophenoxy)acetic acid], and (C) eliminated by a combination of herbicide, clipping sprouts, and trenching to prevent root and rhizome invasion. Ponderosa pine survival after 19 yr averaged 9%, 66%, and 90%, respectively, for the three treatments. Tree height after 19 yr averaged 1.6, 1.9, and 5.7 m for treatments A, B, and C, respectively. Soil moisture use was initially less on the herbicide-treated than on the untreated plots, but bearmat quickly sprouted after application to compete with the pine seedlings for moisture. After 19 yr the bearmat was more dense and appeared to be more vigorous on the sprayed plots than on those receiving no treatment. We estimate that 75% reduction in net wood production could result after 50 yr on this site from bearmat competition.


2004 ◽  
Vol 34 (11) ◽  
pp. 2217-2229 ◽  
Author(s):  
Douglas B Mainwaring ◽  
Douglas A Maguire

Basal area and height growth were analyzed for individual trees in uneven-aged ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and lodgepole pine (Pinus contorta Dougl. ex. Loud.) stands in central Oregon. Basal area growth was modeled as a function of other stand and tree variables to address three general objectives: (1) to compare the predictive ability of distance-dependent versus distance-independent stand density variables; (2) to determine the degree to which small trees negatively affect the growth of overstory trees; and (3) to test for differences in growth efficiency between species and between indices of spatial occupancy used to define efficiency (area potentially available, crown projection area, and a surrogate for total tree leaf area). Distance-dependent variables were found to improve growth predictions when added to models with only distance-independent variables, and small trees were found to have a quantifiably negative effect on the growth of larger trees. While volume growth efficiency declined with increasing levels of spatial occupancy for lodgepole pine, ponderosa pine volume growth efficiency was greatest at the highest levels of crown base sapwood area and crown projection area. The behavior in ponderosa pine resulted from the previously recognized correlation between tree height and total leaf area or crown size. The final statistical models distinguished between the positive effect of relative height and the negative effect of increasing tree size.


2015 ◽  
Vol 45 (11) ◽  
pp. 1607-1616 ◽  
Author(s):  
Monica T. Rother ◽  
Thomas T. Veblen ◽  
Luke G. Furman

Climate change may inhibit tree regeneration following disturbances such as wildfire, altering post-disturbance vegetation trajectories. We implemented a field experiment to examine the effects of manipulations of temperature and water on ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings planted in a low-elevation, recently disturbed setting of the Colorado Front Range. We implemented four treatments: warmed only (Wm), watered only (Wt), warmed and watered (WmWt), and control (Co). We found that measures of growth and survival varied significantly by treatment type. Average growth and survival was highest in the Wt plots, followed by the Co, WmWt, and Wm plots, respectively. This general trend was observed for both conifer species, although average growth and survival was generally higher in ponderosa pine than in Douglas-fir. Our findings suggest that warming temperatures and associated drought are likely to inhibit post-disturbance regeneration of ponderosa pine and Douglas-fir in low-elevation forests of the Colorado Front Range and that future vegetation composition and structure may differ notably from historic patterns in some areas. Our findings are relevant to other forested ecosystems in which a warming climate may similarly inhibit regeneration by dominant tree species.


2010 ◽  
Vol 86 (1) ◽  
pp. 118-129 ◽  
Author(s):  
M J Waterhouse ◽  
E. C. Wallich ◽  
N. M. Daintith ◽  
H. M. Armleder

Mature lodgepole pine (Pinus contorta) forests were harvested using group selection (GS) (0.02-ha openings) and irregular group shelterwood (IGS) (0.05-ha openings) systems to maintain arboreal and terrestrial lichens in the winter range of northern woodland caribou (Rangifer tarandus caribou). Ten years after planting, lodgepole pine showed excellent survival, but were smaller in the partial cut openings compared to the clearcuts. Pine grew less in the Sub-Boreal Pine–Spruce biogeoclimatic subzone (SBPSxc) than in the Montane Spruce subzone (MSxv), and trees were smaller in the GS versus IGS treatment within the MSxv subzone. Interior spruce (Picea glauca × engelmannii) grew best in the MSxv and partial cut treatments, but was significantly affected by summer frost in the clearcuts. In an operational-scale Adaptive Management trial, openings were enlarged to 0.15 ha, and both pine and spruce showed excellent survival, minimal frost damage, and 10-year size similar to clearcut conditions. This study suggests that lodgepole pine and interior spruce can be successfully regenerated in partial cut openings with acceptable growth in gaps of 0.15 ha. Key words: caribou, group selection, interior spruce, irregular group shelterwood, light level, lodgepole pine, Montane Spruce zone, partial harvest, soil moisture, soil temperature, Sub-Boreal Pine Spruce zone, summer frost


Sign in / Sign up

Export Citation Format

Share Document