Existence of Solutions for Stochastic Differential Equations under G-Brownian Motion with Discontinuous Coefficients

2012 ◽  
Vol 67 (12) ◽  
pp. 692-698 ◽  
Author(s):  
Faiz Faizullah

The existence theory for the vector valued stochastic differential equations under G-Brownian motion (G-SDEs) of the type Xt = X0+ ∫to(v;Xv)dv+ ∫t0 g(v;Xv)d(B)v+ ∫t0 h(v;Xv)dBv; t ∊ [0;T]; with first two discontinuous coefficients is established. It is shown that the G-SDEs have more than one solution if the coefficient g or the coefficients f and g simultaneously, are discontinuous functions. The upper and lower solutions method is used and examples are given to explain the theory and its importance.

2012 ◽  
Vol 67 (12) ◽  
pp. 699-704 ◽  
Author(s):  
Faiz Faizullah

In this note, the Carathéodory approximation scheme for vector valued stochastic differential equations under G-Brownian motion (G-SDEs) is introduced. It is shown that the Carathéodory approximate solutions converge to the unique solution of the G-SDEs. The existence and uniqueness theorem for G-SDEs is established by using the stated method.


Filomat ◽  
2019 ◽  
Vol 33 (6) ◽  
pp. 1695-1700
Author(s):  
Zhi Li

In this paper, we are concerned with a class of stochastic differential equations driven by fractional Brownian motion with Hurst parameter 1/2 < H < 1, and a discontinuous drift. By approximation arguments and a comparison theorem, we prove the existence of solutions to this kind of equations under the linear growth condition.


2006 ◽  
Vol 2006 ◽  
pp. 1-6 ◽  
Author(s):  
Nikolaos Halidias ◽  
P. E. Kloeden

The existence of a mean-square continuous strong solution is established for vector-valued Itô stochastic differential equations with a discontinuous drift coefficient, which is an increasing function, and with a Lipschitz continuous diffusion coefficient. A scalar stochastic differential equation with the Heaviside function as its drift coefficient is considered as an example. Upper and lower solutions are used in the proof.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 988
Author(s):  
Pengju Duan

The paper is devoted to studying the exponential stability of a mild solution of stochastic differential equations driven by G-Brownian motion with an aperiodically intermittent control. The aperiodically intermittent control is added into the drift coefficients, when intermittent intervals and coefficients satisfy suitable conditions; by use of the G-Lyapunov function, the p-th exponential stability is obtained. Finally, an example is given to illustrate the availability of the obtained results.


2019 ◽  
Vol 20 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Hua Zhang

In this paper, we prove a moderate deviation principle for the multivalued stochastic differential equations whose proof are based on recently well-developed weak convergence approach. As an application, we obtain the moderate deviation principle for reflected Brownian motion.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Oussama El Barrimi ◽  
Youssef Ouknine

Abstract Our aim in this paper is to establish some strong stability results for solutions of stochastic differential equations driven by a Riemann–Liouville multifractional Brownian motion. The latter is defined as a Gaussian non-stationary process with a Hurst parameter as a function of time. The results are obtained assuming that the pathwise uniqueness property holds and using Skorokhod’s selection theorem.


Sign in / Sign up

Export Citation Format

Share Document