scholarly journals Synthesis and Characterization of Ammonium Acesulfamate

2014 ◽  
Vol 69 (6) ◽  
pp. 737-741 ◽  
Author(s):  
Gustavo A. Echeverría ◽  
Oscar E. Piro ◽  
Beatriz S. Parajón-Costa ◽  
Enrique J. Baran

Ammonium acesulfamate, (NH4)C4H4NO4S, was prepared by the reaction of acesulfamic acid and ammonium carbonate in aqueous solution, and characterized by elemental analysis and 1H and 13C NMR spectroscopy. Its crystal and molecular structure was determined by single-crystal X-ray diffraction methods. The substance crystallizes in the orthorhombic space group Pnma with Z = 4 molecules per unit cell. The NH4+ ion generates medium to strong hydrogen bonds with the carbonylic oxygen, the iminic nitrogen and the sulfonyl oxygen atoms of the acesulfamate anion. The FTIR spectrum of the compound was also recorded and is briefly discussed.

Author(s):  
ROGER GUILARD ◽  
VIRGINIE PICHON-PESME ◽  
HASSANE LACHEKAR ◽  
CLAUDE LECOMTE ◽  
ALLY M. AUKAULOO ◽  
...  

The synthesis and characterization of three monomeric aluminum porphycenes with anionic or σ-bonded axial ligands is reported. The investigated compounds are represented as ( EtioPc ) Al ( CH 3) and ( EtioPc ) AlX where EtioPc represents the dianion of etioporphycene and X = Cl − or OH −. Each synthesized complex was characterized by mass spectrometry. 1 H NMR, IR and UV-visible spectroscopies as well as by electrochemistry. Comparisons are made between the properties of complexes in the aluminum etioporphycene series and related chloro- or methyl σ-bonded Al ( III ) porphyrins containing octaethylporphyrin ( OEP ) or tetraphenylporphyrin ( TPP ) macrocycles. Comparisons are also made between the currently investigated compounds and a previously reported Al ( III ) μ-oxo dimer, [( EtioPc ) Al ]2 O . In addition, the crystal and molecular structure of ( EtioPc ) Al ( CH 3) was determined by X-ray diffraction. The molecular structure of this methyl-σ-bonded aluminum etioporphycene provides the first structural data for an aluminum porphycene compound. The aluminum(III) atom in ( EtioPc ) Al ( CH 3) is pentacoordinated and is located 0.54 Å from the plane of the four N -nitrogens.


1995 ◽  
Vol 50 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Frank W. Heinemann ◽  
Helmut Hartung ◽  
Nadja Maier

The title compound, formed by the reaction of acetophenone with 3-diethylamino-1-propylamine and sulfur, crystallizes in the orthorhombic space group P212121 (Z = 4) with lattice constants a = 818.1(2) pm, b = 1225.1(2) pm and c = 1622.4(4) pm. The characterization of the molecule as a zwitterion is established by the observed bond parameters. Both spectroscopic investigations and the results of the X-ray structure determination show that a hydrogen atom is bonded to the amino nitrogen rather than to the imino nitrogen.


2007 ◽  
Vol 62 (3) ◽  
pp. 427-438 ◽  
Author(s):  
Vincenzo G. Albano ◽  
Luigi Busetto ◽  
Fabio Marchetti ◽  
Magda Monari ◽  
Stefano Zacchini ◽  
...  

The diiron aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (R = Xy1, 1a; R = Me, 1b; R = CH2Ph, 1c; Xy1 = 2,6-Me2C6H3) undergo replacement of the coordinated nitrile by halides, diethyldithiocarbamate, and dicyanomethanide to give [Fe2{μ-CN(Me) (R)}(μ-CO)(CO)(X)(Cp)2] complexes (R = Me, X = Br, 4a; R = Me, X = I, 4b; R = CH2Ph, X = Cl, 4c; R = CH2Ph, X = Br, 4d; R = CH2Ph, X = I, 4e; R = Xy1, X = SC(S)NEt2, 5a; R = Me, X = SC(S)NEt2, 5b; R = Xy1, X = CH(CN)2, 7), in good yields. The molecular structure of 5a shows an unusual η1 coordination mode of the dithiocarbamate ligand. Similarly, treatment of [M2{μ-CN(Me) (R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (M = Fe, R = Xy1, 1a; M = Fe, R = Me, 1b; M = Ru, R = Xy1, 2a; M = Ru, R = Me, 2b) with a series of phosphanes generates the cationic complexes [M2{μ- CN(Me)(R)}(μ-CO)(CO)(P)(Cp)2][SO3CF3] (M = Fe, R = Xy1, P = PPh2H, 6a; M = Fe, R = Xy1, P = PPh3, 6b; M = Fe, R = Xy1, P = PMe3, 6c; M = Fe, R = Me, P = PMe2Ph, 6d; M = Fe, R = Me, P = PPh3, 6e; M = Fe, R = Me, P = PMePh2, 6f; M = Ru, R = Xy1, P = PPh2H, 6g; M = Ru, R = Me, P = PPh2H, 6h), in high yields. The molecular structure of 6a has been elucidated by an X-ray diffraction study. The reactions of [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO)(NCR′)(Cp)2][SO3CF3] [R′ = Me, 1a; R′ = tBu, 3] with PhLi and PPh2Li yield [Fe2{μ-CN(Me)(Xy1)}(μ-CO)(CO)(Ph)(Cp)2] (8) and [Fe2{μ-CN(Me)(Xy1)}(μ-CO)(CO)(PPh2)(Cp)2] (9), respectively. The molecular structure of 8 has been ascertained by X-ray diffraction. Conversely, the reaction of 1a with MeLi generates the aminoalkylidene compound [Fe2{C(Me)N(Me)(Xy1)}(μ-CO)2(CO)(Cp)2] (10).Finally, the acetone complex [Fe2{μ-CN(Me)(Xy1)}(μ-CO)(CO)(OCMe2)(Cp)2][SO3CF3] (12) reacts with lithium acetylides to give complexes [Fe2{μ-CN(Me)(Xy1)}(μ-CO)(CO)(C≡CR)(Cp)2] (R = p-C6H4Me, 11a; R = Ph, 11b; R = SiMe3, 11c), in high yields. Filtration through alumina of a solution of 11a in CH2Cl2 results in hydration of the acetylide group and C-Si bond cleavage, affording [Fe2{μ-CN(Me)(Xy1)}(μ-CO)(CO){C(O)Me}(Cp)2] (12).


1980 ◽  
Vol 58 (8) ◽  
pp. 777-779 ◽  
Author(s):  
T. Stanley Cameron ◽  
Christine Chan ◽  
David G. Morris ◽  
Alistair G. Shepherd

The crystals belong to the orthorhombic space group C222, with a = 9.226, b = 12.092, c = 16.513 Å, Z = 4. A single crystal X-ray diffraction analysis has shown that the title compound, in which all carbon atoms are sp2 hybridized, exists with the ten membered ring in a slightly twisted tub conformation. The 13C nmr spectrum is also reported.


1998 ◽  
Vol 53 (5-6) ◽  
pp. 634-636 ◽  
Author(s):  
Martina Näveke ◽  
Armand Blaschette ◽  
Peter G. Jones

Abstract The crystal structure of the known title compound was determined by low-temperature X-ray diffraction (orthorhombic, space group Pbcn, Z = 4). The molecule displays an unusually short O-N bond, a relatively long C-O bond and a moderately pyramidal O-NS2 skeleton (O-N 133.1, C-O 148.5 pm, sum of bond angles at N: 347.4°).


Synthesis ◽  
2020 ◽  
Author(s):  
Marcelo Preite ◽  
Elies Molins ◽  
Ivonne Chávez ◽  
Mungalimane K. Amshumali ◽  
Cesar Morales-Verdejo ◽  
...  

AbstractThis contribution describes an updated synthetic route to 3,6-dihydro-as-indacene along with full characterization of all inter­mediates. The title compound is prepared by Mannich condensation of 2-methylfuran with formaldehyde and dimethylamine hydrochloride, quaternization of the resulting amine with methyl iodide, and conversion into the ammonium hydroxide salt by treatment with silver oxide in water. Subsequent Hoffmann elimination and [6,6]-cycloaddition through pyrolysis produces a furanocyclophane, which after photooxidation, intramolecular cycloaddition, and dehydration with sodium carbonate affords 2,3,6,7-tetrahydro-1,8-dione-as-indacene. Reduction of this diketone gives a mixture of alcohols, which after dehydration under slightly basic or acidic conditions produces 3,6-dihydro-as-indacene. The structure is confirmed by X-ray diffraction, and all intermediates are characterized by means of 1H and 13C NMR spectroscopy.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
R. Kefi ◽  
M. Zeller ◽  
F. Lefebvre ◽  
C. Ben Nasr

The crystal structure of the new inorganic-organic hybrid compound [4-CH3C6H4CH2NH3]2[CdCl4] has been determined by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group Pnma with lattice parameters a=10.721(2), b=33.986(6), c=5.326(1) Å, β=97.222(1)°, V=1940.8(7) Å3, and Z=4. The framework of the title compound is built upon layers parallel to (010) made up from corner-sharing CdCl6 octahedra. 4-Methylbenzylammonium cations are situated between the layers and connect them via an N–H⋯Cl hydrogen bonding network. The Cd atom is located on an inversion centre, and the coordination environment is described as distorted octahedral. Solid state 13C CP-MAS NMR spectroscopy is in agreement with the X-ray structure. DFT calculations allow the attribution of the carbon peaks to the independent crystallographic sites. Thermal analysis and infrared spectroscopy were also used to characterize the complex.


1983 ◽  
Vol 61 (7) ◽  
pp. 1603-1607 ◽  
Author(s):  
Kathy A. Beveridge ◽  
Gordon W. Bushnell ◽  
Reginald H. Mitchell

Conformations in a variety of cyclophane structures are discussed, as determined by X-ray diffraction in crystals and by 1Hmr in solution. Established nomenclature is brought forward (syn/anti and synclinal/anticlinal) and used to deal with an intermediate case which has been examined by both techniques. The crystal and molecular structure of the title compound, C16H16S4, is determined and refined to R = 0.0497. The crystal is orthorhombic, space group Pbca, a = 16.593(2), b = 10.018(2), c = 19.407(3) Å at 25(2) °C, Z = 8, Dcalc = 1.386 g cm−3. The molecular conformation in the crystal is anticlinal with a dihedral angle between the benzene rings of 101°. The benzene rings are displaced laterally by 0.727 Å and the sequence of torsion angles is similar in the two bridging chains.


Sign in / Sign up

Export Citation Format

Share Document