scholarly journals SUPERVISED AUTOMATIC HISTOGRAM CLUSTERING AND WATERSHED SEGMENTATION. APPLICATION TO MICROSCOPIC MEDICAL COLOR IMAGES

2011 ◽  
Vol 22 (2) ◽  
pp. 113 ◽  
Author(s):  
Olivier Lezoray

In this paper, an approach to the segmentation of microscopic color images is addressed, and applied to medical images. The approach combines a clustering method and a region growing method. Each color plane is segmented independently relying on a watershed based clustering of the plane histogram. The marginal segmentation maps intersect in a label concordance map. The latter map is simplified based on the assumption that the color planes are correlated. This produces a simplified label concordance map containing labeled and unlabeled pixels. The formers are used as an image of seeds for a color watershed. This fast and robust segmentation scheme is applied to several types of medical images.

2016 ◽  
Vol 78 (4-3) ◽  
Author(s):  
Hussain Rahman ◽  
Fakhrud Din ◽  
Sami ur Rahmana ◽  
Sehatullah Sehatullah

Region-growing based image segmentation techniques, available for medical images, are reviewed in this paper. In digital image processing, segmentation of humans' organs from medical images is a very challenging task. A number of medical image segmentation techniques have been proposed, but there is no standard automatic algorithm that can generally be used to segment a real 3D image obtained in daily routine by the clinicians. Our criteria for the evaluation of different region-growing based segmentation algorithms are: ease of use, noise vulnerability, effectiveness, need of manual initialization, efficiency, computational complexity, need of training, information used, and noise vulnerability. We test the common region-growing algorithms on a set of abdominal MRI scans for the aorta segmentation. The evaluation results of the segmentation algorithms show that region-growing techniques can be a better choice for segmenting an object of interest from medical images.


2008 ◽  
Author(s):  
Rachid Fahmi ◽  
Anna Jerebko ◽  
Matthias Wolf ◽  
Aly A. Farag

1998 ◽  
Author(s):  
Keiko Ohkura ◽  
Hidezaku Nishizawa ◽  
Takashi Obi ◽  
Masahiro Yamaguchi ◽  
Nagaaki Ohyama

2013 ◽  
Vol 760-762 ◽  
pp. 1552-1555 ◽  
Author(s):  
Jing Jing Wang ◽  
Xiao Wei Song ◽  
Mei Fang

Image segmentation in medical image processing has been extensively used which has also been applied in different fields of medicine to assist doctors to make the correct judgment and grasp the patient's condition. However, nowadays there are no image threshold segmentation techniques that can be applied to all of the medical images; so it has became a challenging problem. In this paper, it applies a method of identifying edge of the tissues and organs to recognize its contour, and then selects a number of seed points on the contour range to locate the cancer area by region growing. And finally, the result has demonstrated that this method can mostly locate the cancer area accurately.


Author(s):  
X. Roynard ◽  
J.-E. Deschaud ◽  
F. Goulette

Change detection is an important issue in city monitoring to analyse street furniture, road works, car parking, etc. For example, parking surveys are needed but are currently a laborious task involving sending operators in the streets to identify the changes in car locations. In this paper, we propose a method that performs a fast and robust segmentation and classification of urban point clouds, that can be used for change detection. We apply this method to detect the cars, as a particular object class, in order to perform parking surveys automatically. A recently proposed method already addresses the need for fast segmentation and classification of urban point clouds, using elevation images. The interest to work on images is that processing is much faster, proven and robust. However there may be a loss of information in complex 3D cases: for example when objects are one above the other, typically a car under a tree or a pedestrian under a balcony. In this paper we propose a method that retain the three-dimensional information while preserving fast computation times and improving segmentation and classification accuracy. It is based on fast region-growing using an octree, for the segmentation, and specific descriptors with Random-Forest for the classification. Experiments have been performed on large urban point clouds acquired by Mobile Laser Scanning. They show that the method is as fast as the state of the art, and that it gives more robust results in the complex 3D cases.


Sign in / Sign up

Export Citation Format

Share Document