scholarly journals FAST AND ROBUST SEGMENTATION AND CLASSIFICATION FOR CHANGE DETECTION IN URBAN POINT CLOUDS

Author(s):  
X. Roynard ◽  
J.-E. Deschaud ◽  
F. Goulette

Change detection is an important issue in city monitoring to analyse street furniture, road works, car parking, etc. For example, parking surveys are needed but are currently a laborious task involving sending operators in the streets to identify the changes in car locations. In this paper, we propose a method that performs a fast and robust segmentation and classification of urban point clouds, that can be used for change detection. We apply this method to detect the cars, as a particular object class, in order to perform parking surveys automatically. A recently proposed method already addresses the need for fast segmentation and classification of urban point clouds, using elevation images. The interest to work on images is that processing is much faster, proven and robust. However there may be a loss of information in complex 3D cases: for example when objects are one above the other, typically a car under a tree or a pedestrian under a balcony. In this paper we propose a method that retain the three-dimensional information while preserving fast computation times and improving segmentation and classification accuracy. It is based on fast region-growing using an octree, for the segmentation, and specific descriptors with Random-Forest for the classification. Experiments have been performed on large urban point clouds acquired by Mobile Laser Scanning. They show that the method is as fast as the state of the art, and that it gives more robust results in the complex 3D cases.

Author(s):  
X. Roynard ◽  
J.-E. Deschaud ◽  
F. Goulette

Change detection is an important issue in city monitoring to analyse street furniture, road works, car parking, etc. For example, parking surveys are needed but are currently a laborious task involving sending operators in the streets to identify the changes in car locations. In this paper, we propose a method that performs a fast and robust segmentation and classification of urban point clouds, that can be used for change detection. We apply this method to detect the cars, as a particular object class, in order to perform parking surveys automatically. A recently proposed method already addresses the need for fast segmentation and classification of urban point clouds, using elevation images. The interest to work on images is that processing is much faster, proven and robust. However there may be a loss of information in complex 3D cases: for example when objects are one above the other, typically a car under a tree or a pedestrian under a balcony. In this paper we propose a method that retain the three-dimensional information while preserving fast computation times and improving segmentation and classification accuracy. It is based on fast region-growing using an octree, for the segmentation, and specific descriptors with Random-Forest for the classification. Experiments have been performed on large urban point clouds acquired by Mobile Laser Scanning. They show that the method is as fast as the state of the art, and that it gives more robust results in the complex 3D cases.


2021 ◽  
Vol 13 (11) ◽  
pp. 2135
Author(s):  
Jesús Balado ◽  
Pedro Arias ◽  
Henrique Lorenzo ◽  
Adrián Meijide-Rodríguez

Mobile Laser Scanning (MLS) systems have proven their usefulness in the rapid and accurate acquisition of the urban environment. From the generated point clouds, street furniture can be extracted and classified without manual intervention. However, this process of acquisition and classification is not error-free, caused mainly by disturbances. This paper analyses the effect of three disturbances (point density variation, ambient noise, and occlusions) on the classification of urban objects in point clouds. From point clouds acquired in real case studies, synthetic disturbances are generated and added. The point density reduction is generated by downsampling in a voxel-wise distribution. The ambient noise is generated as random points within the bounding box of the object, and the occlusion is generated by eliminating points contained in a sphere. Samples with disturbances are classified by a pre-trained Convolutional Neural Network (CNN). The results showed different behaviours for each disturbance: density reduction affected objects depending on the object shape and dimensions, ambient noise depending on the volume of the object, while occlusions depended on their size and location. Finally, the CNN was re-trained with a percentage of synthetic samples with disturbances. An improvement in the performance of 10–40% was reported except for occlusions with a radius larger than 1 m.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3347 ◽  
Author(s):  
Zhishuang Yang ◽  
Bo Tan ◽  
Huikun Pei ◽  
Wanshou Jiang

The classification of point clouds is a basic task in airborne laser scanning (ALS) point cloud processing. It is quite a challenge when facing complex observed scenes and irregular point distributions. In order to reduce the computational burden of the point-based classification method and improve the classification accuracy, we present a segmentation and multi-scale convolutional neural network-based classification method. Firstly, a three-step region-growing segmentation method was proposed to reduce both under-segmentation and over-segmentation. Then, a feature image generation method was used to transform the 3D neighborhood features of a point into a 2D image. Finally, feature images were treated as the input of a multi-scale convolutional neural network for training and testing tasks. In order to obtain performance comparisons with existing approaches, we evaluated our framework using the International Society for Photogrammetry and Remote Sensing Working Groups II/4 (ISPRS WG II/4) 3D labeling benchmark tests. The experiment result, which achieved 84.9% overall accuracy and 69.2% of average F1 scores, has a satisfactory performance over all participating approaches analyzed.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Tran Thanh Ha ◽  
Taweep Chaisomphob

Mobile LiDAR is an emerging advanced technology for capturing three-dimensional road information at a large scale effectively and precisely. Pole-like road facilities are crucial street infrastructures as they provide valuable information for road mapping and road inventory. Thus, the automated localization and classification of road facilities are necessary. This paper proposes a voxel-based method to detect and classify pole-like objects in an expressway environment based on the spatially independent and vertical height continuity analysis. First, the ground points are eliminated, and the nonground points are merged into clusters. Second, the pole-like objects are extracted using horizontal cross section analysis and minimum vertical height criteria. Finally, a set of knowledge-based rules, which comprise height features and geometric shape, is constructed to classify the detected road poles into different types of road facilities. Two test sites of point clouds in an expressway environment, which are located in Bangkok, Thailand, are used to assess the proposed method. The proposed method extracts the pole-like road facilities from two datasets with a detection rate of 95.1% and 93.5% and an overall quality of 89.7% and 98.0% in the classification stage, respectively. This shows that the algorithm could be a promising alternative for the localization and classification of pole-like road facilities with acceptable accuracy.


2021 ◽  
Vol 10 (6) ◽  
pp. 367
Author(s):  
Simoni Alexiou ◽  
Georgios Deligiannakis ◽  
Aggelos Pallikarakis ◽  
Ioannis Papanikolaou ◽  
Emmanouil Psomiadis ◽  
...  

Analysis of two small semi-mountainous catchments in central Evia island, Greece, highlights the advantages of Unmanned Aerial Vehicle (UAV) and Terrestrial Laser Scanning (TLS) based change detection methods. We use point clouds derived by both methods in two sites (S1 & S2), to analyse the effects of a recent wildfire on soil erosion. Results indicate that topsoil’s movements in the order of a few centimetres, occurring within a few months, can be estimated. Erosion at S2 is precisely delineated by both methods, yielding a mean value of 1.5 cm within four months. At S1, UAV-derived point clouds’ comparison quantifies annual soil erosion more accurately, showing a maximum annual erosion rate of 48 cm. UAV-derived point clouds appear to be more accurate for channel erosion display and measurement, while the slope wash is more precisely estimated using TLS. Analysis of Point Cloud time series is a reliable and fast process for soil erosion assessment, especially in rapidly changing environments with difficult access for direct measurement methods. This study will contribute to proper georesource management by defining the best-suited methodology for soil erosion assessment after a wildfire in Mediterranean environments.


Author(s):  
Leena Matikainen ◽  
Juha Hyyppä ◽  
Paula Litkey

During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from the data do not include shadows. These are significant advantages when the development of automated classification and change detection procedures is considered.


Author(s):  
M. Lemmens

<p><strong>Abstract.</strong> A knowledge-based system exploits the knowledge, which a human expert uses for completing a complex task, through a database containing decision rules, and an inference engine. Already in the early nineties knowledge-based systems have been proposed for automated image classification. Lack of success faded out initial interest and enthusiasm, the same fate neural networks struck at that time. Today the latter enjoy a steady revival. This paper aims at demonstrating that a knowledge-based approach to automated classification of mobile laser scanning point clouds has promising prospects. An initial experiment exploiting only two features, height and reflectance value, resulted in an overall accuracy of 79<span class="thinspace"></span>% for the Paris-rue-Madame point cloud bench mark data set.</p>


Author(s):  
J. Gehrung ◽  
M. Hebel ◽  
M. Arens ◽  
U. Stilla

Abstract. Change detection is an important tool for processing multiple epochs of mobile LiDAR data in an efficient manner, since it allows to cope with an otherwise time-consuming operation by focusing on regions of interest. State-of-the-art approaches usually either do not handle the case of incomplete observations or are computationally expensive. We present a novel method based on a combination of point clouds and voxels that is able to handle said case, thereby being computationally less expensive than comparable approaches. Furthermore, our method is able to identify special classes of changes such as partially moved, fully moved and deformed objects in addition to the appeared and disappeared objects recognized by conventional approaches. The performance of our method is evaluated using the publicly available TUM City Campus datasets, showing an overall accuracy of 88 %.


Author(s):  
Bisheng Yang ◽  
Yuan Liu ◽  
Fuxun Liang ◽  
Zhen Dong

High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.


Sign in / Sign up

Export Citation Format

Share Document