scholarly journals Comparison of PMtotal, PM10, PM2.5, NOx, and SO2 Emission Factors from Coal-fired Power Plants per Load Change

2021 ◽  
Vol 15 (3) ◽  
pp. 75-84
Author(s):  
JeongHun Yu ◽  
Jihan Song ◽  
DoYoung Lee ◽  
MyeongSang Yu ◽  
JongHan Jung ◽  
...  
2021 ◽  
Vol 1 (2) ◽  
pp. 78-85
Author(s):  
Francis Boluwaji Elehinafe ◽  
Oyetunji Babatunde Okedere ◽  
Queen Edidiong Ebong-Bassey ◽  
Jacob Ademola Sonibare

This work generated data on the emission factors of air emissions from combustion of woody biomasses collected from southwest, Nigeria. This was with a view to finding their potentials as sustainable and environmentally friendly fuels for firing thermal power plants compared to coals. The data on heating values and elemental contents (carbon, sulphur and nitrogen) responsible for gaseous emissions in the 100 woody biomasses were collected from the previous results of this work to determine the gaseous emission factors on the expected condition of complete combustion. The current results showed that the CO2 emission factors ranged from 0.0147 kg/(MJ/kg) for Ficus mucuso to 0.1499 kg/(MJ/kg) for Spondias mombin, SO2 emission factors ranged from 0.0000000 kg/(MJ/kg) for Pterygota macrocarpa, Irvingia grandifolia, and fifteen others, to 0.0011341kg/(MJ/kg) for Khaya ivorensis, while NO2 emission factors ranged from 0.0000000 kg/(MJ/kg) for Citrus medica to 0.0035824 kg/(MJ/kg) for Ficus carica. Considering the minimal emissions from biomasses compared to coal species, serious political will is needed on the part of the Nigerian government to propagate these biomasses for fuels in firing the thermal plants in the country.


2012 ◽  
Vol 16 (4) ◽  
pp. 1213-1228 ◽  
Author(s):  
Vladimir Jovanovic ◽  
Mirko Komatina

2018 ◽  
Vol 18 (5) ◽  
pp. 3433-3456 ◽  
Author(s):  
Meng Li ◽  
Zbigniew Klimont ◽  
Qiang Zhang ◽  
Randall V. Martin ◽  
Bo Zheng ◽  
...  

Abstract. Bottom-up emission inventories provide primary understanding of sources of air pollution and essential input of chemical transport models. Focusing on SO2 and NOx, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improve emission inventories. We first compared the activity rates and emission factors used in two inventories and investigated the reasons of differences and the impacts on emission estimates. We found that SO2 emission estimates are consistent between two inventories (with 1 % differences), while NOx emissions in ECLIPSE's estimates are 16 % lower than those of MIX. The FGD (flue-gas desulfurization) device penetration rate and removal efficiency, LNB (low-NOx burner) application rate and abatement efficiency in power plants, emission factors of industrial boilers and various vehicle types, and vehicle fleet need further verification. Diesel consumptions are quite uncertain in current inventories. Discrepancies at the sectorial and provincial levels are much higher than those of the national total. We then examined the impacts of different inventories on model performance by using the nested GEOS-Chem model. We finally derived top-down emissions by using the retrieved columns from the Ozone Monitoring Instrument (OMI) compared with the bottom-up estimates. High correlations were observed for SO2 between model results and OMI columns. For NOx, negative biases in bottom-up gridded emission inventories (−21 % for MIX, −39 % for ECLIPSE) were found compared to the satellite-based emissions. The emission trends from 2005 to 2010 estimated by two inventories were both consistent with satellite observations. The inventories appear to be fit for evaluation of the policies at an aggregated or national level; more work is needed in specific areas in order to improve the accuracy and robustness of outcomes at finer spatial and also technological levels. To our knowledge, this is the first work in which source comparisons detailed to technology-level parameters are made along with the remote sensing retrievals and chemical transport modeling. Through the comparison between bottom-up emission inventories and evaluation with top-down information, we identified potential directions for further improvement in inventory development.


2006 ◽  
Vol 10 (3) ◽  
pp. 109-118 ◽  
Author(s):  
Janis Zandersons ◽  
Aivars Zhurinsh ◽  
Edward Someus

If a small-scale clean coal fueled power plant is co-fueled with 5% of creosote-treated used-up sleeper wood, the decontamination by carbonisation at 500 ?C in an indirectly heated rotary kiln with the diameter 1.7 m and effective length 10 m can be realized. It should be included in the "3R Clean Coal Carbonisation Plant" system, which processes coal. It will improve the heat balance of the system, since the carbonisation of wood will deliver a lot of high caloricity pyroligneous vapour to the joint furnace of the "3R Clean Coal Carbonisation Plant". Pine wood sleeper sapwood contains 0.25% of sulphur, but the average pine sleeper wood (sapwood and heartwood) 0.05% of sulphur. Most of the sulphur is lost with the pyroligneous vapour and burned in the furnace. Since the "3R Clean Coal Carbonisation Plant" is equipped with a flue gases cleaning system, the SO2 emission level will not exceed 5 mg/m3. The charcoal of the sapwood portion of sleepers and that of the average sleeper wood will contain 0.22% and 0.035% of sulphur, respectively. The increase of the carbonisation temperature does not substantially decrease the sulphur content in charcoal, although it is sufficiently low, and the charcoal can be co-fired with clean coal. The considered process is suitable for small power plants, if the biomass input in the common energy balance is 5 to 10%. If the mean distance of sleepers transportation for Central and Eastern Europe is estimated not to exceed 200 km, the co-combustion of clean coal and carbonized sleepers would be an acceptable option from the environmental and economic points of view.


Author(s):  
Jonas Gliß ◽  
Kerstin Stebel ◽  
Arve Kylling ◽  
Anna Solvejg Dinger ◽  
Holger Sihler ◽  
...  

UV SO2 cameras have become a common tool to measure and monitor SO2-emission-rates, mostly from volcanoes but also from anthropogenic sources (e.g. power plants or ships). In the past years, the analysis of UV SO2 camera data has seen many improvements. As a result, for many of the required analysis steps, several alternatives exist today. This inspired the development of Pyplis, an open-source software toolbox written in Python 2.7, which aims to unify the most prevalent methods from literature within a single, cross-platform analysis framework. Pyplis comprises a vast collection of algorithms relevant for the analysis of UV SO2 camera data. These include several routines to retrieve plume background radiances as well as routines for cell and DOAS based camera calibration. The latter includes two independent methods to identify the DOAS field-of-view within the camera images. Plume velocities can be retrieved using an optical flow algorithm as well as signal cross-correlation. Furthermore, Pyplis includes a routine to perform a first order correction of the signal dilution effect. All required geometrical calculations are performed within a 3D model environment allowing for distance retrievals to plume and local terrain features on a pixel basis. SO2-emission-rates can be retrieved simultaneously for an arbitrary number of plume intersections. Pyplis has been extensively and successfully tested using data from several field campaigns. Here, the main features are introduced using a dataset obtained at Mt. Etna, Italy on 16 September 2015.


Energy ◽  
2010 ◽  
Vol 35 (7) ◽  
pp. 2992-2998 ◽  
Author(s):  
S. Nazari ◽  
O. Shahhoseini ◽  
A. Sohrabi-Kashani ◽  
S. Davari ◽  
R. Paydar ◽  
...  

2010 ◽  
Vol 10 (13) ◽  
pp. 6311-6331 ◽  
Author(s):  
Z. Lu ◽  
D. G. Streets ◽  
Q. Zhang ◽  
S. Wang ◽  
G. R. Carmichael ◽  
...  

Abstract. With the rapid development of the economy, the sulfur dioxide (SO2) emission from China since 2000 is of increasing concern. In this study, we estimate the annual SO2 emission in China after 2000 using a technology-based methodology specifically for China. From 2000 to 2006, total SO2 emission in China increased by 53%, from 21.7 Tg to 33.2 Tg, at an annual growth rate of 7.3%. Emissions from power plants are the main sources of SO2 in China and they increased from 10.6 Tg to 18.6 Tg in the same period. Geographically, emission from north China increased by 85%, whereas that from the south increased by only 28%. The emission growth rate slowed around 2005, and emissions began to decrease after 2006 mainly due to the wide application of flue-gas desulfurization (FGD) devices in power plants in response to a new policy of China's government. This paper shows that the trend of estimated SO2 emission in China is consistent with the trends of SO2 concentration and acid rain pH and frequency in China, as well as with the increasing trends of background SO2 and sulfate concentration in East Asia. A longitudinal gradient in the percentage change of urban SO2 concentration in Japan is found during 2000–2007, indicating that the decrease of urban SO2 is lower in areas close to the Asian continent. This implies that the transport of increasing SO2 from the Asian continent partially counteracts the local reduction of SO2 emission downwind. The aerosol optical depth (AOD) products of Moderate Resolution Imaging Spectroradiometer (MODIS) are found to be highly correlated with the surface solar radiation (SSR) measurements in East Asia. Using MODIS AOD data as a surrogate of SSR, we found that China and East Asia excluding Japan underwent a continuous dimming after 2000, which is in line with the dramatic increase in SO2 emission in East Asia. The trends of AOD from both satellite retrievals and model over East Asia are also consistent with the trend of SO2 emission in China, especially during the second half of the year, when sulfur contributes the largest fraction of AOD. The arrested growth in SO2 emissions since 2006 is also reflected in the decreasing trends of SO2 and SO42− concentrations, acid rain pH values and frequencies, and AOD over East Asia.


2013 ◽  
Vol 20 (3) ◽  
pp. 742-748 ◽  
Author(s):  
Yan Zhang ◽  
Xiao-long Tang ◽  
Hong-hong Yi ◽  
Jie-yun Ma

Sign in / Sign up

Export Citation Format

Share Document