scholarly journals A tsunami depositional model in coastal lowland over sand dune: An example from the 17th century tsunami deposit in the eastern Iburi coast, central Hokkaido, northern Japan

2013 ◽  
Vol 119 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Yasuhiro Takashimizu ◽  
Jun Nagai ◽  
Satoshi Okamura ◽  
Yuichi Nishimura
2007 ◽  
Vol 46 (2) ◽  
pp. 119-130 ◽  
Author(s):  
Yasuhiro Takashimizu ◽  
Tsumoru Sagayama ◽  
Kenji Nishina ◽  
Takao Oka ◽  
Yugo Nakamura ◽  
...  

2017 ◽  
Vol 56 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Yasuhiro Takashimizu ◽  
Kenji Nishina ◽  
Gentaro Kawakami ◽  
Yoshiki Sato ◽  
Satoshi Okamura ◽  
...  

2020 ◽  
Author(s):  
Mike Frenken ◽  
Piero Bellanova ◽  
Yuichi Nishimura ◽  
Jan Schwarzbauer ◽  
Klaus Reicherter

<p>Japan, more precisely, the eastern coastal areas of Honshu, are one of the most affected areas of tsunamis in the world. Major events within the last century were three Sanriki-oki tsunamis (1896, 1933, 1968), and the most recent 2011 Tohoku-oki tsunami, triggered by the 9.1 M<sub>W</sub> Tohoku-oki earthquake, which caused massive damage along the coastlines.</p><p>The 2011 Tohoku-oki tsunami overtopped the coastal defense walls with waves of 6-10 m height along the shores of the Aomori Prefecture in Northern Japan. The inundation reached up to 550 m inland, however, sandy tsunami deposits are limited to 250 – 350 m of the total inundation distance. At the field site of Misawa Harbor the well-preserved identifiable tsunami remains show up to 18 cm thick sand layers with sedimentary features, such as fining upward sequences, mud caps and rip-up clasts. The sandy deposits were enclosed in the soil of the coastal protection forest. Along with the sedimentary record of the tsunami, the use of organic geochemical indicators can provide a better understanding of the extend and processes, such as the deposition of tsunami layers and the backwash, of the inundation by the 2011 Tohoku-oki tsunami. The devastating damages caused by the interaction of tsunami and earthquake released pollutants associated as biological and anthropogenic markers. These released pollutants give the tsunami deposit an unique geochemical signature, that is distinguishable from the background sedimentation. Organic-geochemical results reveal a strong increase of anthropogenic (polycyclic aromatic hydrocarbons, pesticides and chlorinated compounds) and a variation of biological markers (i.e. n-alkanes, fatty acids) in the 2011 tsunami deposit close to the fishery port. During the analysis of the samples, another variation of biomarker and anthropogenic marker were identified right below the soil layer of the current forest. This layer is as well distinguishable from the paleo-dune that marks the lowest sedimentological unit at the field site. This differentiation shows the likely impact of a historical Sanriki-oki tsunami (1896, 1933 or 1968). These organic geochemical results in combination with local eyewitness reports of the tsunamis and lead to the assumption that the sedimentary archive of the Aomori coastline contains and preserved at two or more tsunami events of the last century.</p><p>The inclusion of organic geochemical markers to expand the characterizing and identifying proxies used in tsunami research are important to get a better understanding of the processes and deposition during tsunamis. Furthermore, this method can detect tsunami deposits beyond the visible recognizability of sedimentological identification of tsunami deposits and therefore can serve as a blue-print for historical and paleo-tsunami studies, as most of them only rely on visible sand deposits as marker for inundation distances from the beach. The high-resolution geochemical application can gain more information than standard techniques, like the identification of the “invisible” tsunami layer exceeding the limits of sandy deposits or the deposition in similar sedimentary textures, capturing a broader picture of the event.</p>


2021 ◽  
Author(s):  
Piero Bellanova ◽  
Mike Frenken ◽  
Yuchi Nishimura ◽  
Jan Schwarzbauer ◽  
Klaus Reicherter

<p>With at least three reported waves, the 2011 Tohoku-oki tsunami’s destructive force caused massive damage along the Aomori coastline in northern Japan. At Misawa the coastal area was inundated up to 550 m inland and sandy sediment remnants can be traced to c. 350 m (c. 61-63% of the maximum inundation) from the shoreline.</p><p>The discovery of a floatable plastic object within a previously inconspicuous woody and organic layer in connection to our analytical data lead to the detection of a yet undocumented ‘invisible’ tsunami deposit. This layer is first appearing on top of the sandy deposit but then reaching even further inland (approx. 69-72% of the max. inundation). Initially the organic and woody layer was not evident during early stages of the field work and this would have been unchanged without the discovery of the floatable plastic particle embedded within the deposit. That critical observation was the turning point for the interpretation of the layer’s origin and thus our understanding of processes during the Tohoku-oki tsunami at the Aomori coast near Misawa harbor. Overall, may the first recognition of this woody-organic and up to now ‘invisible’ layer lead to an improvement in the understanding of tsunami processes and their sedimentological characteristics. Further, may the knowledge obtained from these types of deposits be transferred to and improve paleo-tsunami investigations, especially in rural natural environments, as sand sheets of historic and paleo-tsunamis represent minimum estimates for the coastal inundation and potential underestimations may be reduced by addressing the ‘invisible’ fraction of a tsunami’s inundation.</p>


Sign in / Sign up

Export Citation Format

Share Document