anthropogenic markers
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 3)

Author(s):  
Minja Bogunović ◽  
Tijana Marjanović ◽  
Ivana Ivančev-Tumbas

Emerging microcontaminants benzophenone (BP), benzophenone-3 (BP-3) and caffeine (CF) are widely used anthropogenic markers from a group of pharmaceuticals and personal care products. They have different logD values and charges at neutral pH (2.96 neutral for BP; 3.65 negative and neutral for BP-3; 0.28 and neutral for CF). The goal of this study was to assess the efficacy of coagulation/flocculation/sedimentation (C/F/S), adsorption onto two types of powdered activated carbon (PAC)/sedimentation (PAC/S) and the combination of these two processes in different dosing sequences (PAC/C/F/S) and with/without ultrafiltration (powdered activated carbon/ultrafiltration—PAC/UF, coagulation/UF—CoA/UF) for the removal of selected micropollutants from river water. It was shown that the removal efficiency of benzophenones by coagulation depends on the season, while CF was moderately removed (40–70%). The removal of neutral BP by two PACs unexpectedly differed (near 40% and ˃93%), while the removal of BP-3 was excellent (>95%). PACs were not efficient for the removal of hydrophilic CF. Combined PAC/C/F/S yielded excellent removal for BP and BP-3 regardless of PAC type only when the PAC addition was followed by C/F/S, while C/F/S efficiency for CF diminished. The combination of UF with PAC or coagulant showed also high efficacy for benzophenones, but was negligible for CF removal.


Quaternary ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 19
Author(s):  
Elodie Brisset ◽  
Jordi Revelles ◽  
Isabel Expósito ◽  
Joan Bernabeu Aubán ◽  
Francesc Burjachs

We conducted palynological, sedimentological, and chronological analyses of a coastal sediment sequence to investigate landscape evolution and agropastoral practices in the Nao Cap region (Spain, Western Mediterranean) since the Holocene. The results allowed for a reconstruction of vegetation, fire, and erosion dynamics in the area, implicating the role of fire in vegetation turnover at 5300 (mesophilous forests replaced by sclerophyllous scrubs) and at 3200 calibrated before present (cal. BP) (more xerophytics). Cereal cultivation was apparent from the beginning of the record, during the Mid-Neolithic period. From 5300 to 3800 cal. BP, long-lasting soil erosion was associated with the presence of cereals, indicating intense land-use during the Chalcolithic and Bronze Age periods. The decline of the agriculture signal and vegetal recolonization is likely explained by land abandonment during the Final Bronze Age. Anthropogenic markers reappeared during the Iberian period when more settlements were present. A contingency of human and environmental agencies was found at 5900, 4200, and 2800 cal. BP, coinciding with abrupt climate events, that have manifested locally in reduced spring discharge, an absence of agropastoral evidence, and a marked decline in settlement densities. This case study, covering five millennia and three climate events, highlights how past climate changes have affected human activities, and also shows that people repeatedly reoccupied the coast once the perturbation was gone. The littoral zone remained attractive for prehistoric communities despite the costs of living in an area exposed to climatic hazards, such as droughts.


2020 ◽  
Author(s):  
Jan Schwarzbauer ◽  
Piero Bellanova ◽  
Mike Frenken ◽  
Bruce Jaffe ◽  
Witold Szczuciński ◽  
...  

<p>Organic geochemistry is commonly used in environmental studies. In tsunami research, however, its application is in its infancy and rarely used. Tsunami deposits may also be able to be characterized by organic-geochemical parameters as tsunami transports not only particulate sedimentary material from marine to terrestrial areas (and vice versa), but also associated organic material. Recently, more attention has been given to the usage of natural organic substances (biomarkers) for tsunami identification. We present results of biomarkers and anthropogenic markers detected in deposits of the 2011 Tohoku-oki tsunami on the Sendai Plain, Japan (Bellanova et al., 2020). As the tsunami inundated the coastal lowland up to 4.85 km inland, sediments from various sources were eroded, transported and deposited across the area. This led to the distribution of biomarkers from different sources across the Sendai Plain creating a unique geochemical signature in the tsunami deposits. The tsunami also caused destruction along the Sendai coastline, leading to the release of large quantities of environmental pollutants (e.g., fossil fuels, tarmac, pesticides, plastics, etc.) that were distributed across the inundated area. Corresponding anthropogenic markers, represented by three main compound groups (polycyclic aromatic hydrocarbons, pesticides, and halogenated compounds), were preserved in tsunami deposits (at least until 2013, prior to land clearing). Organic compounds from the tsunami deposits (Tohoku-oki tsunami) were extracted from tsunami sediment and compared with the organic signature of unaffected pre-tsunami samples using gas chromatography-mass spectrometry (GS/MS) based analyses. Their concentrations differed significantly from the pre- and post-tsunami background contamination levels. Organic proxy concentrations differ also for sandy and muddy tsunami deposits due to various factors (e.g., preservation, dilution, microbial alteration).</p><p>As tsunami research advanced over the last decades so did the methods used to gain more and more information on the past events. Developing new methods for the identification and characterization of tsunami deposits for recent, historic or paleo events is crucial. Every piece of additional information we gain from event deposits leads us a step further to a better understanding of mechanisms acting during a tsunami. This will help to improve countermeasures and relief efforts. Anthropogenic markers and biomarkers, because of their high source specificity and good preservation potential, have the potential to be a valuable proxy in future studies of tsunami deposits and provide information about sediment sources and transport pathways.</p>


2020 ◽  
Author(s):  
Mike Frenken ◽  
Piero Bellanova ◽  
Yuichi Nishimura ◽  
Jan Schwarzbauer ◽  
Klaus Reicherter

<p>Japan, more precisely, the eastern coastal areas of Honshu, are one of the most affected areas of tsunamis in the world. Major events within the last century were three Sanriki-oki tsunamis (1896, 1933, 1968), and the most recent 2011 Tohoku-oki tsunami, triggered by the 9.1 M<sub>W</sub> Tohoku-oki earthquake, which caused massive damage along the coastlines.</p><p>The 2011 Tohoku-oki tsunami overtopped the coastal defense walls with waves of 6-10 m height along the shores of the Aomori Prefecture in Northern Japan. The inundation reached up to 550 m inland, however, sandy tsunami deposits are limited to 250 – 350 m of the total inundation distance. At the field site of Misawa Harbor the well-preserved identifiable tsunami remains show up to 18 cm thick sand layers with sedimentary features, such as fining upward sequences, mud caps and rip-up clasts. The sandy deposits were enclosed in the soil of the coastal protection forest. Along with the sedimentary record of the tsunami, the use of organic geochemical indicators can provide a better understanding of the extend and processes, such as the deposition of tsunami layers and the backwash, of the inundation by the 2011 Tohoku-oki tsunami. The devastating damages caused by the interaction of tsunami and earthquake released pollutants associated as biological and anthropogenic markers. These released pollutants give the tsunami deposit an unique geochemical signature, that is distinguishable from the background sedimentation. Organic-geochemical results reveal a strong increase of anthropogenic (polycyclic aromatic hydrocarbons, pesticides and chlorinated compounds) and a variation of biological markers (i.e. n-alkanes, fatty acids) in the 2011 tsunami deposit close to the fishery port. During the analysis of the samples, another variation of biomarker and anthropogenic marker were identified right below the soil layer of the current forest. This layer is as well distinguishable from the paleo-dune that marks the lowest sedimentological unit at the field site. This differentiation shows the likely impact of a historical Sanriki-oki tsunami (1896, 1933 or 1968). These organic geochemical results in combination with local eyewitness reports of the tsunamis and lead to the assumption that the sedimentary archive of the Aomori coastline contains and preserved at two or more tsunami events of the last century.</p><p>The inclusion of organic geochemical markers to expand the characterizing and identifying proxies used in tsunami research are important to get a better understanding of the processes and deposition during tsunamis. Furthermore, this method can detect tsunami deposits beyond the visible recognizability of sedimentological identification of tsunami deposits and therefore can serve as a blue-print for historical and paleo-tsunami studies, as most of them only rely on visible sand deposits as marker for inundation distances from the beach. The high-resolution geochemical application can gain more information than standard techniques, like the identification of the “invisible” tsunami layer exceeding the limits of sandy deposits or the deposition in similar sedimentary textures, capturing a broader picture of the event.</p>


2020 ◽  
Vol 31 (1) ◽  
pp. 167-184
Author(s):  
Pollyana C.V. Morais ◽  
Marcielly F.B. Lima ◽  
Davi A. Martins ◽  
Lysandra G. Fontenele ◽  
Joyce L.R. Lima ◽  
...  

Purpose An efficient and adequate environmental monitoring plan is essential to any integrated coastal zone management (ICZM) program. The purpose of this paper is to apply an environmental diagnostic study to a coastal lagoon using anthropogenic markers as a decision support tool to aid the development of coastal environmental management policies. Design/methodology/approach Specifically, environmental status and anthropogenic sources were determined as part of a coastal environmental management plan; a study of human occupation and use was conducted to determine the predominant human activities around the lagoon; an environmental diagnostic study was conducted to determine the occurrence, levels and distribution of markers; and the results of the environmental diagnostic study were compared to indicators stipulated in Brazilian legislation. Findings Land use study revealed both urban and rural activities around the lagoon, as evidenced by the existence of residences, restaurants as well as poultry and livestock activities. The environmental diagnostic study revealed the input of human sewage (treated and raw) and runoff from animal husbandry activities. Practical implications The information produced using anthropogenic markers showed the influence of less studied rural activities, such as livestock and poultry farming, thereby providing a more reliable environmental status compared to the use of classic indicators employed in laws issued by international and Brazilian agencies. Originality/value The present results show that classic indicators used by environmental agencies are insufficient for an accurate diagnosis of coastal zones with multiple anthropogenic activities. Thus, the modernization of the environmental monitoring plan of the ICZM program is urgently needed for a more accurate assessment of coastal environments.


2019 ◽  
Vol 91 (20) ◽  
pp. 12988-12996 ◽  
Author(s):  
Peter Carl ◽  
Dominik Sarma ◽  
Bruno J. R. Gregório ◽  
Kristin Hoffmann ◽  
Andreas Lehmann ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 931 ◽  
Author(s):  
Ana Silva ◽  
Nuno Neng ◽  
José Nogueira

Multi-spheres adsorptive microextraction using powdered activated carbons (ACs) was studied as a novel enrichment approach, followed by liquid desorption and high-performance liquid chromatography with diode array detection (MSAµE(AC)-LD/HPLC-DAD) to monitor caffeine (CAF) and acetaminophen (ACF) traces in environmental matrices. In this study, commercial activated carbons (N, NOX, and R) were tested, with the latter showing a much better performance for the analysis of both anthropogenic drugs. The main parameters affecting the efficiency of the proposed methodology are fully discussed using commercial AC(R). Textural and surface chemistry properties of the ACs sample were correlated with the analytical results. Assays performed on 30 mL of water samples spiked at 10 µg L−1 under optimized experimental conditions, yielding recoveries of 75.3% for ACF and 82.6% for CAF. The methodology also showed excellent linear dynamic ranges for both drugs with determination coefficients higher than 0.9976, limits of detection and quantification of 0.8–1.2 µg L−1 and 2.8–4.0 µg L−1, respectively, and suitable precision (RSD < 13.8%). By using the standard addition method, the application of the present method to environmental matrices, including superficial, sea, and wastewater samples, allowed very good performance at the trace level. The proposed methodology proved to be a feasible alternative for polar compound analysis, showing to be easy to implement, reliable, and sensitive, with the possibility to reuse and store the analytical devices loaded with the target compounds for later analysis.


Chemosphere ◽  
2019 ◽  
Vol 219 ◽  
pp. 191-201 ◽  
Author(s):  
Stuart Ramage ◽  
Dolores Camacho-Muñoz ◽  
Bruce Petrie

The Holocene ◽  
2019 ◽  
Vol 29 (5) ◽  
pp. 816-829 ◽  
Author(s):  
Rachid Cheddadi ◽  
Alessio Palmisano ◽  
José Antonio López-Sáez ◽  
Madja Nourelbait ◽  
Christoph Zielhofer ◽  
...  

The aim of this work is to reconstruct the periods of growth and decline of human populations in Morocco and their potential impacts on the landscape over the past 10,000 years. In order to estimate the trends in the human population size between 10,000 and 3000 years ago, we used a summed probability distribution (SPD) of radiocarbon dates from a wide range of archaeological sites throughout Morocco. Landscape changes were identified and quantified from a dataset of fossil pollen records. Different anthropogenic pollen markers, as well as natural vegetation groups and taxonomic richness were used to analyse the relationship between long-term trends in human population expansion or regression and type of impact on the landscape. The sub-regions of Morocco have different topographies and climates, which have either favoured or prevented the establishment and/or spread of human populations. In order to identify the areas most significantly impacted by humans and the timing of such impacts, we have reconstructed and compared the same past anthropogenic and landscape proxies along with the population trends within the lowlands and mountainous areas. The lowlands were more strongly impacted earlier in the Holocene than the mountainous areas. Anthropogenic markers indicate that farming expanded in the lowlands during the first major expansion of human populations between ca. 7200 and 6700 cal. yr BP at the start of the Neolithic period. In the Atlas and Rif Mountains, anthropogenic impact is not clearly detectable in any of these areas before 4000 cal. BP.


Sign in / Sign up

Export Citation Format

Share Document