scholarly journals ASSESSMENT OF LAND SURFACE TEMPERATURE FROM SATELLITE DATA FOR DIFFERENT LAND USE AND LAND COVER

Author(s):  
Iosif Vorovencii
Author(s):  
Sanjay Shekar N C ◽  
Hemalatha H N

Understanding vegetation characteristics is essential for watershed modeling, like in the prediction of streamflow and evapotranspiration (AET) estimation. So, the present study was taken to analyze the Land use/Land cover characteristics in a Sub-humid tropical river basin which is originating in the forested part of Western Ghats mountain ranges using the Moderate Resolution Imaging Spectroradiometer (MODIS) and Bhuvan satellite data as inputs for the algorithm. All the fourteen LU/LC characteristics present in the Hemavathi basin (5427 km2 ) were analyzed in the basin using satellite data which is located in Karnataka, India. Land Surface Reflectance (LSR) and Land Surface Temperature (LST) were the two data products used as input to map the pixel-wise variations in albedo, the fraction of vegetation (FV) and Land Surface Temperature (LST). It was found from the rainfall data that the year 2019 experienced higher rainfall than the average and 2012 very low rainfall than the normal. Parameters considered in this study Albedo, LST and FV are susceptible to wetness and temperature conditions. Variations in albedo and LST were similar in that both values in the summer of 2019 and 2012 are high than winter due to the high temperature and less wetness from all the LU/LC classes. Similarly, FV variations show opposite trends that values in the summer of 2019 and 2012 are low than in winter, which is due to the high temperature and less wetness. The results and discussions show that significant realistic variations in albedo, LST and FV with respect to all LU/LC classes. All the LU/LC classes characteristics in this study show significant variations with respect to wetness and temperature conditions, so the methodology proposed in this study can be used in regional monitoring of LU/LC classes in a convenient and cost-effective manner.


2021 ◽  
Author(s):  
Gitanjali Thakur ◽  
Stan Schymanski ◽  
Kaniska Mallick ◽  
Ivonne Trebs

<p>The surface energy balance (SEB) is defined as the balance between incoming energy from the sun and outgoing energy from the Earth’s surface. All components of the SEB depend on land surface temperature (LST). Therefore, LST is an important state variable that controls the energy and water exchange between the Earth’s surface and the atmosphere. LST can be estimated radiometrically, based on the infrared radiance emanating from the surface. At the landscape scale, LST is derived from thermal radiation measured using  satellites.  At the plot scale, eddy covariance flux towers commonly record downwelling and upwelling longwave radiation, which can be inverted to retrieve LST  using the grey body equation :<br>             R<sub>lup</sub> = εσ T<sub>s</sub><sup>4</sup> + (1 − ε) R<sub> ldw         </sub>(1)<br>where R<sub>lup</sub> is the upwelling longwave radiation, R<sub>ldw</sub> is the downwelling longwave radiation, ε is the surface emissivity, <em>T<sub>s</sub>  </em>is the surface temperature and σ  is the Stefan-Boltzmann constant. The first term is the temperature-dependent part, while the second represents reflected longwave radiation. Since in the past downwelling longwave radiation was not measured routinely using flux towers, it is an established practice to only use upwelling longwave radiation for the retrieval of plot-scale LST, essentially neglecting the reflected part and shortening Eq. 1 to:<br>               R<sub>lup</sub> = εσ T<sub>s</sub><sup>4 </sup>                       (2)<br>Despite  widespread availability of downwelling longwave radiation measurements, it is still common to use the short equation (Eq. 2) for in-situ LST retrieval. This prompts the question if ignoring the downwelling longwave radiation introduces a bias in LST estimations from tower measurements. Another associated question is how to obtain the correct ε needed for in-situ LST retrievals using tower-based measurements.<br>The current work addresses these two important science questions using observed fluxes at eddy covariance towers for different land cover types. Additionally, uncertainty in retrieved LST and emissivity due to uncertainty in input fluxes was quantified using SOBOL-based uncertainty analysis (SALib). Using landscape-scale emissivity obtained from satellite data (MODIS), we found that the LST  obtained using the complete equation (Eq. 1) is 0.5 to 1.5 K lower than the short equation (Eq. 2). Also, plot-scale emissivity was estimated using observed sensible heat flux and surface-air temperature differences. Plot-scale emissivity obtained using the complete equation was generally between 0.8 to 0.98 while the short equation gave values between 0.9 to 0.98, for all land cover types. Despite additional input data for the complete equation, the uncertainty in plot-scale LST was not greater than if the short equation was used. Landscape-scale daytime LST obtained from satellite data (MODIS TERRA) were strongly correlated with our plot-scale estimates, but on average higher by 0.5 to 9 K, regardless of the equation used. However, for most sites, the correspondence between MODIS TERRA LST and retrieved plot-scale LST estimates increased significantly if plot-scale emissivity was used instead of the landscape-scale emissivity obtained from satellite data.</p>


2021 ◽  
Author(s):  
Rasha Abou Samra

Abstract Land surface temperature (LST) is a significant environmental variable that is appreciably influenced by land use /land cover changes. The main goal of this research was to quantify the impacts of land use/land cover change (LULC) from the drying of Toshka Lakes on LST by remote sensing and GIS techniques. Landsat series TM and OLI satellite images were used to estimate LST from 2001 to 2019. Automated Water Extraction Index (AWEI) was applied to extract water bodies from the research area. Optimized Soil-Adjusted Vegetation Index (OSAVI) was utilized to predict the reclaimed land in the Toshka region until 2019. The results indicated a decrease in the lakes by about 1517.79 km2 with an average increase in LST by about 25.02 °C between 2001 and 2019. It was observed that the dried areas of the lakes were converted to bare soil and are covered by salt crusts. The results indicated that the land use change was a significant driver for the increased LST. The mean annual LST increased considerably by 0.6 °C/y between 2001 and 2019. A strong negative correlation between LST and Toshka Lakes area (R-square = 0.98) estimated from regression analysis implied that Toshka Lakes drying considerably affected the microclimate of the study area. Severe drought conditions, soil degradation, and many environmental issues were predicted due to the rise of LST in the research area. There is an urgent need to develop favorable strategies for sustainable environmental management in the Toshka region.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-19
Author(s):  
Tahmid Anam Chowdhury ◽  
◽  
Md. Saiful Islam ◽  

Urban developments in the cities of Bangladesh are causing the depletion of natural land covers over the past several decades. One of the significant implications of the developments is a change in Land Surface Temperature (LST). Through LST distribution in different Land Use Land Cover (LULC) and a statistical association among LST and biophysical indices, i.e., Urban Index (UI), Bare Soil Index (BI), Normalized Difference Builtup Index (NDBI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index (MNDWI), this paper studied the implications of LULC change on the LST in Mymensingh city. Landsat TM and OLI/TIRS satellite images were used to study LULC through the maximum likelihood classification method and LSTs for 1989, 2004, and 2019. The accuracy of LULC classifications was 84.50, 89.50, and 91.00 for three sampling years, respectively. From 1989 to 2019, the area and average LST of the built-up category has been increased by 24.99% and 7.6ºC, respectively. Compared to vegetation and water bodies, built-up and barren soil regions have a greater LST each year. A different machine learning method was applied to simulate LULC and LST in 2034. A remarkable change in both LULC and LST was found through this simulation. If the current changing rate of LULC continues, the built-up area will be 59.42% of the total area, and LST will be 30.05ºC on average in 2034. The LST in 2034 will be more than 29ºC and 31ºC in 59.64% and 23.55% areas of the city, respectively.


Sign in / Sign up

Export Citation Format

Share Document