COMPARATIVE ANALYSIS OF POINT CLOUDS OBTAINED BY TLS AND PHOTOGRAMMETRY

Author(s):  
Tadeusz Widerski
2017 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Luis Lopez-Fernandez ◽  
Pablo Rodriguez-Gonzalvez ◽  
David Hernandez-Lopez ◽  
Damian Ortega-Terol ◽  
Diego Gonzalez-Aguilera

2019 ◽  
Vol 11 (11) ◽  
pp. 1372 ◽  
Author(s):  
Xinyi Liu ◽  
Yongjun Zhang ◽  
Xiao Ling ◽  
Yi Wan ◽  
Linyu Liu ◽  
...  

Limited by the noise, missing data and varying sampling density of the point clouds, planar primitives are prone to be lost during plane segmentation, leading to topology errors when reconstructing complex building models. In this paper, a pipeline to recover the broken topology of planar primitives (TopoLAP) is proposed to reconstruct level of details 3 (LoD3) models. Firstly, planar primitives are segmented from the incomplete point clouds and feature lines are detected both from point clouds and images. Secondly, the structural contours of each plane segment are reconstructed by subset selection from intersections of these feature lines. Subsequently, missing planes are recovered by plane deduction according to the relationships between linear and planar primitives. Finally, the manifold and watertight polyhedral building models are reconstructed based on the optimized PolyFit framework. Experimental results demonstrate that the proposed pipeline can handle partial incomplete point clouds and reconstruct the LoD3 models of complex buildings automatically. A comparative analysis indicates that the proposed method performs better to preserve sharp edges and achieves a higher fitness and correction rate than rooftop-based modeling and the original PolyFit algorithm.


Author(s):  
N. Ahmad ◽  
S. Azri ◽  
U. Ujang ◽  
M. G. Cuétara ◽  
G. M. Retortillo ◽  
...  

Abstract. Videogrammetry is a technique to generate point clouds by using video frame sequences. It is a branch of photogrammetry that offers an attractive capabilities and make it an interesting choice for a 3D data acquisition. However, different camera input and specification will produce different quality of point cloud. Thus, it is the aim of this study to investigate the quality of point cloud that is produced from various camera input and specification. Several devices are using in this study such as Iphone 5s, Iphone 7+, Iphone X, Digital camera of Casio Exilim EX-ZR1000 and Nikon D7000 DSLR. For each device, different camera with different resolution and frame per second (fps) are used for video recording. The videos are processed using EyesCloud3D by eCapture. EyesCloud3D is a platform that receive input such as videos and images to generate point clouds. 3D model is constructed based on generated point clouds. The total number of point clouds produced is analyzed to determine which camera input and specification produce a good 3D model. Besides that, factor of generating number of point clouds is analyzed. Finally, each camera resolution and fps is suggested for certain applications based on generated number of point cloud.


Sign in / Sign up

Export Citation Format

Share Document