ZOOPLANKTON COMMUNITY STRUCTURE AND ENVIRONMENTAL CONDITIONS FROM TUNDRA LAKES IN THE PECHORA RIVER DELTA (NORTHERN RUSSIA)

Author(s):  
Niyaz Nigmatullin
2009 ◽  
Vol 33 (3) ◽  
pp. 556-561
Author(s):  
Gui-Jun YANG ◽  
Bo-Qiang QIN ◽  
Guang GAO ◽  
Xiao-Dong WANG ◽  
Hong-Yan WANG

Hydrobiologia ◽  
2009 ◽  
Vol 632 (1) ◽  
pp. 225-233 ◽  
Author(s):  
S. Matthew Drenner ◽  
Stanley I. Dodson ◽  
Ray W. Drenner ◽  
John E. Pinder III

2018 ◽  
Vol 77 (2) ◽  
Author(s):  
Zengling Ma ◽  
Hengguo Yu ◽  
Ronald Thring ◽  
Chuanjun Dai ◽  
Anglv Shen ◽  
...  

Algal bloom has been a subject of much research, especially the occurrence of blue-green algae (cyanobacteria) blooms and their effects on aquatic ecosystems. However, the interaction between green algae blooms and zooplankton community was rarely investigated. In the present study, the effects exerted by Scenedesmus dimorphus (green alga) bloom on the community structure of zooplankton and the top-down control of the bloom process mediated by the zooplankton were evaluated using a series of laboratory cultures. The results showed that a dense S. dimorphus bloom could change the zooplankton community structure by decreasing its diversity indices, leading to the enrichment of a particular zooplankton species, Brachionus calyciflorus. In the presence of mixed species of zooplankton, the density of S. dimorphus in the culture was decreased as determined by a change in total chlorophyll a (Chl a) concentration, which was about 200 μg L-1 lower than that of the zooplankton-free culture. Furthermore, the number of species belonging to Cladocera, Copepoda and Rotifera all decreased, with all the cladocerans disappeared in the co-culture within 2 weeks of culturing, while the density of rotifers increased from 818 (±243) ind L-1 at the time of inoculation to 40733 (±2173) ind L-1 on the 14th day post-inoculation. Grazing of S. dimorphus by the rotifer B. calyciflorus neutralized its growth, and the gradual increase in B. calyciflorus density eventually led to the collapse of the bloom. Furthermore, grazing by B. calyciflorus also led to a decrease in the maximal photochemical efficiency (Fv/Fm) of photosystem II (PSII). The combined changes occurring in the zooplankton community structure during the process of S. dimorphus bloom and the negative effects of grazing on algal growth, morphology and photosynthetic activities confirmed the key role of zooplankton in the control of algal bloom. The results of the study therefore indicated that dense algal blooms caused by non-toxic algae could still remain a threat to aquatic ecosystems.


2011 ◽  
Vol 101 (1-2) ◽  
pp. 75-84 ◽  
Author(s):  
Juliana D Dias ◽  
Érica M Takahashi ◽  
Natália F Santana ◽  
Cláudia C Bonecker

We investigated the impact of fish cage culture on the zooplankton community structure in a tropical reservoir. We hypothesized that community abundance is greater near cages and increases over time due to the increase in food availability. Samplings were performed near, upstream and downstream from net cages, and before and after net cage installation. The abundance of zooplankton increased 15 days after the experiment was set up, followed by a reduction and finally increased. Rotifer abundance showed significant differences among sites (p<0.05) and sampling periods (p<0.001). Significant differences were also observed in total zooplankton and cladoceran abundance (p<0.001). The spatial and temporal variation of the physical and chemical variables were indirectly correlated with the structure and dynamic of the zooplankton community, as they indicated the primary production in the environment. Our hypothesis was rejected, since the zooplankton was abundant at the reference site. Only rotifers showed higher abundance near cages, due to the influence of food availability. Community dynamics during the experiment was also correlated to food availability. Our results suggest an impact of fish farming on the zooplankton community.


Sign in / Sign up

Export Citation Format

Share Document