scholarly journals Influence of Knitting Process Parameters on the Thermal Comfort Properties of Eri Silk Knitted Fabrics

2018 ◽  
Vol 26 (5(131)) ◽  
pp. 47-53 ◽  
Author(s):  
Balakrshnan Senthil Kumar ◽  
Thangavelu Ramachandran

Eri silk, a wild silk variety available in the northeastern states of India, has better softness, tensile and thermal properties. The present study aimed to develop different knitted structures and investigate the influence of knitting process variables on the thermal comfort and wicking properties. Knitted single jersey and single pique fabric structures were produced with two sets of yarns – 25 tex and 14.32 tex with three levels of loop length. Thermal properties of the fabric were analysed using an Alambeta instrument, and the wicking ability was measured with an vertical wicking tester. Thermal comfort properties of eri silk were also compared with those of conventional mulberry silk, with the experiment result revealing that eri silk has better comfort values. A statistically significant correlation is found between knitting process parameters viz. the yarn count, loop length knitting structure and the thermal and wickability values of the fabrics.

2017 ◽  
Vol 17 (2) ◽  
pp. 152-163 ◽  
Author(s):  
Anindya Ghosh ◽  
Prithwiraj Mal ◽  
Abhijit Majumdar ◽  
Debamalya Banerjee

Abstract Knitted fabrics have excellent comfort properties because of their typical porous structure. Different comfort properties of knitted fabrics such as air permeability, thermal absorptivity, and thermal conductivity depend on the properties of raw material and knitting parameters. In this paper, an investigation was done to observe the effect of yarn count, loop length, knitting speed, and yarn input tension in the presence of two uncontrollable noise factors on selected comfort properties of single jersey and 1×1 rib knitted fabrics using the Taguchi experimental design. The results show that yarn count and loop length have significant influence on the thermo-physiological comfort properties of knitted fabrics.


2017 ◽  
Vol 25 (0) ◽  
pp. 75-80 ◽  
Author(s):  
Thangamuthu Suganthi ◽  
Pandurangan Senthilkumar ◽  
Venugopal Dipika

The thermal comfort properties of different knitted fabric structures made from modal, polypropylene and micro denier polyester were studied for volleyball sportswear. Eleven knitted fabrics were produced, in which three samples were single jersey, two plated and six bi-layer knitted structures. The air permeability, water vapour permeability, thermal conductivity, wicking and drying ability of bi-layer knitted fabric made up of polypropylene as the inner layer and modal as the outer layer with one tuck point of repeat were found to be higher as compared to other bi-layer, plated and single jersey structures. Both theobjective and subjective results show that bi-layer knitted fabric with polypropylene as the inner layer and modal as the outer layer with one tuck point of repeat is mostly suitablefor sportswear. The results are discussed together with multivariate ANOVA test results ata 95% significance level.


2017 ◽  
Vol 89 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Licheng Zhu ◽  
Xungai Wang ◽  
Ian Blanchonette ◽  
Maryam Naebe

Bifacial fabrics, with a single jersey on one face and a plain weave on the other, were produced on a purpose-built machine. Thermal comfort properties of bifacial fabrics were compared with conventional woven and knitted fabrics and the effect of weft density and loop length of bifacial fabrics on their thermal comfort properties was investigated. While different fabric structures were produced with the same wool, acrylic, and polyester yarns, the findings confirmed that the bifacial fabric is warmer (lower total heat loss) and more breathable (higher permeability index ( im)) than the corresponding woven and knitted fabrics. Increasing the loop length of bifacial fabrics enhanced evaporative resistance, air permeability, warm feeling, thermal resistance, and water vapor permeability index, yet reduced total heat loss. An increase in the weft density of bifacial fabrics led to higher evaporative resistance, warmer feeling, higher thermal resistance, lower air permeability, and total heat loss. However, the permeability index did not change with an increase in weft density. This study suggests that thermal comfort properties of bifacial fabrics can be optimized by modifying structural parameters to engineer high-performance textiles.


2017 ◽  
Vol 17 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Ali Afzal ◽  
Sheraz Ahmad ◽  
Abher Rasheed ◽  
Faheem Ahmad ◽  
Fatima Iftikhar ◽  
...  

Abstract The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.


Sign in / Sign up

Export Citation Format

Share Document