thermal absorptivity
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 314 ◽  
pp. 03006
Author(s):  
Ouassila Salhi ◽  
Mohammed Diouri ◽  
Mohammed Amine Moussaoui ◽  
Ibtissam Marsli ◽  
Rajae Meziane

The developed Annual Columnar Radiative Absorptivity (ACRA19) model that describes, in annual mean, the terrestrial radiation balance of an atmospheric column, allows the determination of the various regional, absorption and reflection of solar and infrared radiation using 2018’s annual data of eight sites in MENA region ( between 22N-38N) of latitude obtained from AERONET and NASA POWER. The atmospheric thermal absorptivity (ATA) is very significant at high temperatures with an average of 0.85±0.1 for 1020 nm and the atmospheric visible absorptivity (AVA) registers 0.36 ± 0.06 when the total optical depth observes its maximum linked to dust aerosol advection.


2020 ◽  
Vol 27 (120) ◽  
pp. 243-251
Author(s):  
Esra TAŞTAN ÖZKAN ◽  
Binnaz KAPLANGİRAY

In this study, it is aimed to change the loop length of knitted fabrics with a mesh structure and to investigate the effect of loop length differences on thermal and moisture transmission properties. For this purpose, six fabrics with different loop lengths were produced in two different knittings and yarn types. Thermal conductivity, thermal absorptivity, thermal resistance, air permeability and moisture management properties of these fabrics were measured according to standard test methods. The results showed that as the yarn gets finer and loop length increases, the air permeability values will increase. It was observed that as the loop length increase, the overall moisture management capacity (OMMC) and thermal absorptivity of the fabrics will decrease. The thermal resistance values of two ply textured polyester mesh knitted fabrics decreased with increasing density and the highest loop length two ply textured polyester mesh knitted fabric showed the highest thermal resistance value.


2020 ◽  
Vol 71 (04) ◽  
pp. 302-308
Author(s):  
MINE AKGUN ◽  
GIZEM KARAKAN GUNAYDIN ◽  
AYÇA GÜRARDA ◽  
ERHAN KENAN ÇEVEN

Turkish traditional Buldan weavings are known as special fabrics in terms of providing comfortable clothes which are known to be natural and healthy in Denizli, Turkey. The research presented in this paper assesses the effects of different fabric structural parameters of Buldan fabrics on comfort properties such as thermal resistance, thermal absorptivity, water vapour permeability and air permeability. Five different Buldan fabrics woven with different fabric structural parameters were produced. According to test results, cotton/Tencel Buldan fabrics indicated similar comfort properties with the 100% cotton Buldan fabric properties. Additionally, the lowest thermal absorptivity was observed from 100% cotton Buldan fabrics which give the warmth feeling among the evaluated samples.


Author(s):  
Lubos Hes

In the paper, several relatively new aspects of testing of functional clothing are discussed, such as the effect of moisture and testing time on water vapour permeability of fabrics as well as the effect of the testing time on thermal resistance value of fabrics tested in Skin Model type testers. Also the difference between thermal resistance and thermal absorptivity of fabrics was explained. It was concluded, that there are still some unsolved problems in the above areas, which should attract the attention of textile scientists and technologists.


2020 ◽  
Vol 32 (6) ◽  
pp. 837-847 ◽  
Author(s):  
Sadaf Aftab Abbasi ◽  
Arzu Marmaralı ◽  
Gözde Ertekin

PurposeThis paper investigates the thermal comfort properties of quilted (jersey cord) fabrics produced with different width of diamond pattern, different filling yarn linear density and different types of material.Design/methodology/approachA total of 12 fabrics were knitted by varying the width of diamond pattern (1 and 3 cm), the filling yarn linear density (300 and 900 denier) and the type of materials (cotton, polyester and their combination). In this regard, air permeability, thermal conductivity, thermal resistance, thermal absorptivity and relative water vapor permeability of these fabrics were measured and evaluated statistically.FindingsThe results showed that fabrics knitted using cotton yarn in both front and back surfaces exhibit higher thermal conductivity, thermal absorptivity and relative water vapor permeability characteristics; whereas samples knitted using polyester yarn in both surfaces have higher air permeability and thermal resistance. As the linear density of filling yarn increases, thickness and thermal resistance of the samples increase and air permeability, thermal conductivity, water vapor permeability characteristics decrease. When the effect of the width of diamond pattern compared, it is seen that an increase in the width of pattern lead to an increase in thickness and thermal resistance and a decrease in thermal conductivity, thermal absorptivity and water vapor permeability values.Originality/valueMany researches were carried out on the thermal comfort properties of knitted fabrics, however there is a lack of research efforts regarding thermal comfort properties of quilted fabrics.


2020 ◽  
Vol 3 (01) ◽  
pp. 32-38
Author(s):  
Uduakobong Okorie ◽  
Ubong Robert ◽  
Ubong Iboh ◽  
Grace Umoren ◽  
Grace Umoren

In this work, the properties of the composite produced from waste carton with various tiger nut fibre contents having cassava starch slurry as binder were investigated. The results obtained showed the ranges of the mean thermal conductivity, bulk density, specific heat capacity, thermal diffusivity, thermal absorptivity, nailability, flexural strength  and compressive strength values to be (0.0447 – 0.0603) Wm-1K-1, (683.62 – 746.32) kgm-3, (1439.811 – 1840.554) J/kg/K, (5.612 - 3.553) 10-8 m2s-1, (25.456 – 31.993) m-1, (23.9 – 100)%, (1.58 – 1.86) MPa and (2.16 – 2.78) MPa respectively between  8.3% and 43.1% of the fibre content.  It was generally observed that with a choice variation in the fibre content, the performance of the developed board can be optimized for structural applications. Hence, instead of discarding the fibre as waste, recycling it can help to provide raw material for the production of cost effective and environmentally friendly materials. This will in turn reduce health risk caused by environmental pollution due to improper waste disposal practice of such material.


2020 ◽  
Vol 90 (17-18) ◽  
pp. 1987-2006 ◽  
Author(s):  
Tariq Mansoor ◽  
Lubos Hes ◽  
Vladimir Bajzik ◽  
Muhammad Tayyab Noman

The present study proposes a novel method to measure the thermal resistance and comfort properties of various sock samples under wet conditions. Theoretically, comfort properties are responsible for transporting moisture by our body with different rates. Therefore, plain socks with different fiber composition were wetted to a saturated level and after getting the required moisture content, the sock samples were characterized by Alambeta (for thermal resistance and thermal absorptivity) and Permetest instruments for relative water vapor permeability in the wet state. In addition, various skin models were utilized to make a comparison of thermal resistance in the dry state. Two different models were modified for analyzing the thermal resistance under wet conditions. According to the models used, the prediction of thermal resistance is a combined effect of the filling coefficient and thermal conductivity of wet polymers instead of dry polymers. With these modifications, the used models predicted the thermal resistance at different moisture levels with a significant correlation ( R2) value, that is, 0.84–0.97.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Selin Hanife Eryuruk

AbstractComfort properties of garments are influenced by fiber properties, fabric properties, and applied finishes. Denim garments are widely used apparels, and they are processed with different industrial finishing treatments. Finishing treatments and fabric weight have a great influence on the thermal comfort of denim fabrics. The aim of this paper was to evaluate the effects of finishing treatments (rigid, bleaching, resin, softener) on the thermophysiological comfort and moisture management properties of denim fabrics considering three weight categories (light, medium, heavy). The thermophysiological comfort (thermal resistance, thermal absorptivity, air permeability, water vapor permeability tests) and liquid moisture transport capabilities (transfer wicking and drying behavior of fabrics) were measured and analyzed statistically. As a result of the study, fabric weight and finishing had been found to be important parameters for the comfort properties of denim fabrics. As a conclusion, it could be stated in the light of the results that the fabric weight type (light, medium, heavy) had a significant impact on the fabric thermophysiological comfort properties.


2019 ◽  
Vol 27 (5(137)) ◽  
pp. 80-89
Author(s):  
Elena Tomovska ◽  
Lubos Hes

In this paper, the thermophysiological characteristics of low weight knitted polyamide and polyamide/elastane fabrics for pantyhose differing in terms of filament count were studied. Alambeta and Permetest devices were used to measure the thermal conductivity, thermal resistance, thermal absorptivity, evaporative resistance and relative water vapour permeability. The results indicated that fabrics made of finer filaments have lower thermal conductivity, thermal resistance, thermal absorptivity and evaporative resistance values.


2018 ◽  
Vol 69 (04) ◽  
pp. 315-321 ◽  
Author(s):  
AZEEM MUSADDAQ ◽  
HES LUBOS ◽  
WIENER JAKUB ◽  
NOMAN MUHAMMAD TAYYAB ◽  
ALI AZAM ◽  
...  

Comfort along with the aesthetic properties of textile clothing in activewear and sportswear are utmost worthwhile for costumer demand as latest trends. Different types of fibers and yarns are being used to improve the moisture management and comfort of the fabric for next to skin. Nowadays, multifilaments or nano-filaments of polyester with diameters in the range of a few nanometers and lengths up to kilometers are used in different range of important technological applications such as functional fabrics, biomedicine, composite, etc. Multifilament polyester yarns are made by aggregating many continuous filaments together characterized by their high tenacity and large surface area per unit mass. The nano-filament yarn has also significant effects on thermal comfort properties as a nano-filament fabric has less thermal conductivity than cotton fabric, but equal to multichannel polyester fabric while nano-filament fabrics gave the cool feelings with higher thermal absorptivity. Moreover,coolmax fabric showed the higher value of thermal resistance as compared to nano-filament fabrics. Nano-filament fabrics exhibited higher value of watervaporpermeability than cotton fabric.


Sign in / Sign up

Export Citation Format

Share Document