vapour permeability
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 91)

H-INDEX

23
(FIVE YEARS 5)

Author(s):  
Ferhat Benmahiddine ◽  
Rafik Belarbi

Hemp concrete is one of the most used bio-based materials in the construction industry due to its hygrothermal behaviour and its low environmental footprint. This is mainly due to the complexity of the microstructure of these materials and their highly breathable nature. However, their use remains limited due to the lack of databases and guarantees regarding of the evolution of their functional properties over time. In this paper, experimental investigation has been performed to answer this problematic. The aim is to investigate the influence of accelerated aging on the properties of this material through a succession of immersion/freezing/drying cycles. Materials (aged and reference) were characterized at the same relative humidity state in order to be able to compare the results and to highlight the effect of ageing on the properties of hemp concrete. Results revealed a significant change in the microstructure of this material. As a consequence, this induced significant changes in its hygrothermal and mechanical properties. An increase of 40% in water vapour permeability and decrease of 57% in compressive strength were observed after aging (07 cycles of immersion/freezing/drying).


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 140
Author(s):  
Karel Adámek ◽  
Antonin Havelka ◽  
Zdenek Kůs ◽  
Adnan Mazari

In the field of textile comfort of smart textiles, the breathability of the material is very important. That includes the flow of air, water and water vapours through the textile material. All these experiments are time consuming and costly; only air permeability is much faster and economical. The research is performed to find correlation between these phenomena of breathability and to predict the permeability based on only the air permeability measurement. Furthermore, it introduces a new way of expressing the Ret (water vapour resistance) unit according to SI standards as it is connected with the air permeability of garments. The need to find a correlation between air permeability and water vapour permeability is emphasised in order to facilitate the assessment of clothing comfort. The results show that there is a strong relation between air permeability and water vapour permeability for most of the textile material.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
María Carpintero ◽  
Ismael Marcet ◽  
Manuel Rendueles ◽  
Mario Díaz

Polylactic acid (PLA) is known to be one of the most extensively used biodegradable thermoplastic polyesters, with the potential to replace conventional petroleum-based packaging materials; however, the low flexibility of films prepared using PLA has limited the applications of this biopolymer. In this study, in order to improve the mechanical properties of PLA films and to provide them with antioxidant properties, egg yolk oil was used as a biobased plasticizer. For this purpose, PLA films with increasing concentrations of egg yolk oil were prepared and the effects of this oil on the light transmission, transparency, colour, water vapour permeability, solubility, antioxidant activity and mechanical properties of the films were characterized. In addition, electron microscopy of the structure of the transverse section of the films was also performed. Results showed that the formulations with higher concentrations of egg yolk oil increased the films’ elasticity, and their light barrier and antioxidant properties. Finally, in order to test the films as a packaging material for food applications, extra virgin olive oil and resveratrol, both photosensitive compounds, were packed and exposed to ambient light. Overall, the results show the potential of egg yolk oil as an environmentally friendly plasticizer that can improve the flexibility of PLA films and provide them with additional photoprotective properties.


2021 ◽  
Vol 23 (1) ◽  
pp. 268
Author(s):  
Agnieszka Richert ◽  
Ewa Olewnik-Kruszkowska ◽  
Grażyna B. Dąbrowska ◽  
Henryk P. Dąbrowski

The objective of this study was to produce bactericidal polymer films containing birch tar (BT). The produced polymer films contain PLA, plasticiser PEG (5% wt.) and birch tar (1, 5 and 10% wt.). Compared to plasticised PLA, films with BT were characterised by reduced elongation at break and reduced water vapour permeability, which was the lowest in the case of film with 10% wt. BT content. Changes in the morphology of the produced materials were observed by performing scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis; the addition of BT caused the surface of the film to be non-uniform and to contain recesses. FTIR analysis of plasticised PLA/BT films showed that the addition of birch tar did not change the crystallinity of the obtained materials. According to ISO 22196: 2011, the PLA film with 10% wt. BT content showed the highest antibacterial effect against the plant pathogens A. tumefaciens, X. campestris, P. brassicacearum, P. corrugata, P. syringae. It was found that the introduction of birch tar to plasticised PLA leads to a material with biocidal effect and favourable physicochemical and structural properties, which classifies this material for agricultural and horticultural applications.


Food Research ◽  
2021 ◽  
Vol 5 (6) ◽  
pp. 204-210
Author(s):  
S. Agustin ◽  
E.T. Wahyuni ◽  
Suparmo ◽  
Supriyadi ◽  
M.N. Cahyanto

Biocomposite of bacterial cellulose-alginate has been developed for use as food packaging material. This study aims to understand the physical and mechanical properties of the biocomposite produced from static fermentation of Gluconacetobacter xylinus InaCC B404 in media supplemented with alginate. The strain was grown in a medium containing alginate at a concentration of 0.4, 0.8, and 1.2% w/v at 30oC for 7 days. The SEM images showed that bacterial cellulose produced in a medium supplemented with alginate had a denser structure of fibril network and a smaller pore size than the control one. The structure change was due to interactions through hydrogen bonds between bacterial cellulose and alginate proven by FTIR spectra, resulting in a decrease in crystallinity and crystallite size of bacterial cellulose. It led to the decrease in tensile and tear strength of the resulting biocomposite. Alginate also causes biocomposite to have higher water vapour permeability values.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4443
Author(s):  
Gregor Lavrič ◽  
Aleksandra Zamljen ◽  
Janja Juhant Grkman ◽  
Edita Jasiukaitytė-Grojzdek ◽  
Miha Grilc ◽  
...  

The aim of the study was to isolate lignin from organosolv, beech tree (Fagus sylvatica), and Japanese knotweed (Reynoutria japonica), to use it for paper surface and to replace part of the non-renewable product resources with bio-based ones. A total of nine coated samples with different lignin formulations and starch were compounded, prepared, and evaluated. The basic (grammage, thickness, specific density), mechanical (elongation at break, tensile, burst and tear indices), and barrier properties (contact angle, water penetration, water vapour permeability, kit test) of the coated papers were investigated. The analysis showed no significant difference in tensile properties between uncoated and coated samples. Furthermore, the decrease in water vapour transmission rate and the lower contact angle for coated samples were nevertheless confirmed. The novel coating materials show promising products with very good barrier properties. Finally, the correlation between structural, morphological, and (other) natural lignin-based factors was revealed, highlighting the importance of parameters such as the equivalence ratio of aliphatic and phenolic hydroxyl groups or the average molecular weight. Tuning functionality by design could optimise performance in the future.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4398
Author(s):  
Shiou Xuan Tan ◽  
Andri Andriyana ◽  
Steven Lim ◽  
Hwai Chyuan Ong ◽  
Yean Ling Pang ◽  
...  

The present study was conducted to optimize the extraction yield of starch from sago (Metroxylon sagu) pith waste (SPW) with the assistance of ultrasound ensued by the transformation of extracted starch into a higher value-added bioplastic film. Sago starch with extraction yield of 71.4% was successfully obtained using the ultrasound-assisted extraction, with the following conditions: particle size <250 µm, solid loading of 10 wt.%, ultrasonic amplitude 70% and duty cycle of 83% in 5 min. The rapid ultrasound approach was proven to be more effective than the conventional extraction with 60.9% extraction yield in 30 min. Ultrasound-extracted starch was found to exhibit higher starch purity than the control starch as indicated by the presence of lower protein and ash contents. The starch granules were found to have irregular and disrupted surfaces after ultrasonication. The disrupted starch granules reduced the particle size and increased the swelling power of starch which was beneficial in producing a film-forming solution. The ultrasound-extracted sago starch was subsequently used to prepare a bioplastic film via solution casting method. A brownish bioplastic film with tensile strength of 0.9 ± 0.1 MPa, Young’s modulus of 22 ± 0.8 MPa, elongation at break of 13.6 ± 2.0% and water vapour permeability (WVP) of 1.11 ± 0.1 × 10−8 g m−1 s−1 Pa−1 was obtained, suggesting its feasibility as bioplastic material. These findings provide a means of utilization for SPW which is in line with the contemporary trend towards greener and sustainable products and processes.


2021 ◽  
Vol 13 (24) ◽  
pp. 13504
Author(s):  
Petronela Nechita ◽  
Roman Mirela ◽  
Florin Ciolacu

Xylan hemicelluloses are considered the second most abundant class of polysaccharides after cellulose which has good natural barrier properties necessary for foods packaging papers and films. Xylan exists today as a natural polymer, but its utilisation in packaging applications is limited and not sufficiently analysed. In this study, the performances of hardwood xylan hemicellulose in forming uniform films and as biopolymer for paper coatings were analysed. The xylan-coated paper and film samples were tested regarding their water, air, and water vapour permeability, water solubility, mechanical strength, and antimicrobial activity against pathogenic bacteria. Structural analyses of xylan hemicelluloses emphasised a high number of hydroxyl groups with high water affinity. This affects the functional properties of xylan-coated papers but can facilitate the chemical modification of xylan in order to improve their hydrophobic properties and extend their areas of application. The obtained results unveil a promising starting point for using this material in food packaging applications as a competitive and sustainable alternative to petroleum-based polymers.


2021 ◽  
pp. 174425912110571
Author(s):  
Ida-Helene Johnsen ◽  
Erlend Andenæs ◽  
Lars Gullbrekken ◽  
Tore Kvande

In the building industry, the interest into adhesive tape to achieve a more tight and robust building envelope has increased rapidly in recent years. With an increasing demand for energy efficiency in buildings, national building authorities are strengthening building requirements to mitigate and adapt to future climate impacts. This paper studies the water vapour permeability of adhesive tape for building purposes. A water vapour permeable wind barrier is essential to enable drying of the external side of the building envelope. Laboratory measurements have been conducted to evaluate how the drying conditions of the wind barrier layer are affected by the use of wind barrier tape. The results show that all the wind barrier tapes tested can be defined as significantly more vapour tight than the wind barrier itself. The wind barrier used as reference was found to have an sd-value of 0.03 m while tape ranged between 1.1 and 9.24 m. To ensure adequate drying and minimize the risk of moisture damages, the wind barrier layer should be vapour open. In an investigated construction project, the amount of tape constitutes 13% of the area of the building’s wind barrier. Further simulations need to be conducted to accurately determine the drying conditions and the following consequences.


2021 ◽  
Vol 11 (22) ◽  
pp. 11057
Author(s):  
Paula Gómez-Contreras ◽  
Kelly J. Figueroa-Lopez ◽  
Joaquín Hernández-Fernández ◽  
Misael Cortés Rodríguez ◽  
Rodrigo Ortega-Toro

Every year the world loses about 50% of fruits and vegetables post-harvest and in the supply chain. The use of biodegradable coatings and films with antioxidant properties has been considered an excellent alternative to extend the shelf life of food. Therefore, the objective of this work was to develop a coating based on yam (Dioscorea rotundata L.) starch-containing lime, fennel, and lavender essential oils to extend the shelf life of strawberries (Fragaria vesca l.). The tensile properties, barrier properties (water vapour permeability (WVP) and oxygen permeability (OP)), moisture content, water-solubility, absorption capacity, water contact angle, optical properties, the antioxidant activity of the resultant starch-based coatings were evaluated. After that, the active properties of the coatings were assessed on strawberries inoculated with Aspergillus niger during 14 days of storage at 25 °C. The results showed that the incorporation of essential oils improved the elongation and WVP and provided antioxidant capacity and antimicrobial activity in the films. In particular, the essential oil of lime showed higher antioxidant activity. This fact caused the unwanted modification of other properties, such as the decrease in tensile strength, elastic modulus and increase in OP. The present study revealed the potential use of lime, fennel, and lavender essential oils incorporated into a polymeric yam starch matrix to produce biodegradable active films (antioxidant and antimicrobial). Obtained films showed to be a viable alternative to increase the shelf life of strawberries and protect them against Aspergillus niger.


Sign in / Sign up

Export Citation Format

Share Document