MEASUREMENT UNCERTAINTY ANALYSIS OF DIFFERENT CNC MACHINE TOOLS MEASUREMENT SYSTEMS

2013 ◽  
Vol 7 (19) ◽  
pp. 41-47 ◽  
Author(s):  
Leszek Semotiuk ◽  
Jerzy Józwik ◽  
Kuric Ivan
Author(s):  
Michał Kowal ◽  
Roman Staniek

Accurate ballscrews are vital components of precise machine tool drive systems. As determined by direct measurement systems, the ballscrew positioning error has no bearing on the final positioning accuracy of the axis. For economical reasons, however, most machine tools are equipped with indirect measurement systems, in which errors stemming from thermal expansion of the ballscrew constitute approximately 60% of the kinematic chain error sum. Moreover, the currently observed boost in productivity of modern CNC machine tools leads to significant amplification of energy dispersal values in the nut-screw systems, due to the increased positioning velocity of the controlled axes. This, in turn, contributes to a rise of positioning error values through thermal expansion of the aforementioned ballscrews. This article deals with technological and constructional problems of screw lengthening compensation. It enumerates methods of thermal expansion-based error compensation as attained through utilization of indirect measurement systems. Finally, it presents experimental data indicating the possibility of effective screw lengthening compensation, thus proposing an alternative to the currently applied compensation systems.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


Sign in / Sign up

Export Citation Format

Share Document