scholarly journals The timing of substorms associated with an interplanetary magnetic field sector boundary crossing.

1978 ◽  
Vol 30 (3) ◽  
pp. 197-198 ◽  
Author(s):  
T. R. SANDERSON ◽  
U. FAHLESON ◽  
A. GONFALONE ◽  
B. HOLBACK ◽  
R. LUNDIN ◽  
...  
1996 ◽  
Vol 39 (4) ◽  
Author(s):  
J. Bremer ◽  
J. Lastovicka ◽  
Y. Tulunay

The structure of the Interplanetary Magnetic Field (IMF) is responsible for an essential part of the variability of the ionospheric plasma as demonstrated by investigations of the influence of IMF sector boundary crossings as well as of ?Bz-changes (defined from satellite observations) to the maximal electron density of the F2-layer at different stations in mid-latitudes. It could be shown that negative Bz-values cause distinct negative ionospheric effects. Maximal effects were detected at high geomagnetic latitudes (ionospheric response decreases with decreasing latitude), high solar/geomagnetic activity, equinoxes and night-time conditions.


2012 ◽  
Vol 2 (10) ◽  
pp. 1-3 ◽  
Author(s):  
Praveen Kumar Gupta ◽  
◽  
Puspraj Singh Puspraj Singh ◽  
Puspraj Singh Puspraj Singh ◽  
P. K. Chamadia P. K. Chamadia

1967 ◽  
Vol 72 (5) ◽  
pp. 1637-1643 ◽  
Author(s):  
Paul J. Coleman ◽  
Leverett Davis ◽  
Edward J. Smith ◽  
Douglas E. Jones

1977 ◽  
Vol 82 (29) ◽  
pp. 4837-4842 ◽  
Author(s):  
Michael N. Caan ◽  
Robert L. McPherron ◽  
Christopher T. Russell

2005 ◽  
Vol 23 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
S. E. Milan

Abstract. Dayside UV emissions in Saturn's polar ionosphere have been suggested to be the first observational evidence of the kronian "cusp" (Gérard et al., 2004). The emission has two distinct states. The first is a bright arc-like feature located in the pre-noon sector, and the second is a more diffuse "spot" of aurora which lies poleward of the general location of the main auroral oval, which may be related to different upstream interplanetary magnetic field (IMF) orientations. Here we take up the suggestion that these emissions correspond to the cusp. However, direct precipitation of electrons in the cusp regions is not capable of producing significant UV aurora. We have therefore investigated the possibility that the observed UV emissions are associated with reconnection occurring at the dayside magnetopause, possibly pulsed, akin to flux transfer events seen at the Earth. We devise a conceptual model of pulsed reconnection at the low-latitude dayside magnetopause for the case of northwards IMF which will give rise to pulsed twin-vortical flows in the magnetosphere and ionosphere in the vicinity of the open-closed field-line boundary, and hence to bi-polar field-aligned currents centred in the vortical flows. During intervals of high-latitude lobe reconnection for southward IMF, we also expect to have pulsed twin-vortical flows and corresponding bi-polar field-aligned currents. The vortical flows in this case, however, are displaced poleward of the open-closed field line boundary, and are reversed in sense, such that the field-aligned currents are also reversed. For both cases of northward and southward IMF we have also for the first time included the effects associated with the IMF By effect. We also include the modulation introduced by the structured nature of the solar wind and IMF at Saturn's orbit by developing "slow" and "fast" flow models corresponding to intermediate and high strength IMF respectively. We then consider the conditions under which the plasma populations appropriate to either sub-solar reconnection or high-latitude lobe reconnection can carry the currents indicated. We have estimated the field-aligned voltages required, the resulting precipitating particle energy fluxes, and the consequent auroral output. Overall our model of pulsed reconnection under conditions of northwards and southwards IMF, and for varying orientations of IMF By, is found to produce a range of UV emission intensities and geometries which is in good agreement with the data presented by Gérard et al. (2004). The recent HST-Cassini solar wind campaign provides a unique opportunity to test the theoretical ideas presented here.


Sign in / Sign up

Export Citation Format

Share Document