H-Cmes and Ii-Type Radio Bursts Related Intense Geomagnetic Storms in Relation With Interplanetary Magnetic Field and Solar Wind Disturbances

2012 ◽  
Vol 2 (10) ◽  
pp. 1-3 ◽  
Author(s):  
Praveen Kumar Gupta ◽  
◽  
Puspraj Singh Puspraj Singh ◽  
Puspraj Singh Puspraj Singh ◽  
P. K. Chamadia P. K. Chamadia
2021 ◽  
Author(s):  
Sujan Prasad Gautam ◽  
Ashok Silwal ◽  
Prakash Poudel ◽  
Monika Karki ◽  
Binod Adhikari ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Chandrasekhar Bhoj ◽  
Lalan Prasad

The aim of this paper is to investigate the association of the geomagnetic storms with the IMF for solar cycle 24. Result of the present analysis shows that IMF is geoeffective parameter but its impact varies in accordance with different time periods. The correlation coefficient between Dst and IMF found to be -0.6 for solar cycle 24.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Chandrasekhar Bhoj ◽  
Lalan Prasad

The aim of this paper is to investigate the association of the geomagnetic storms with the IMF for solar cycle 24. Result of the present analysis shows that IMF is geoeffective parameter but its impact varies in accordance with different time periods. The correlation coefficient between Dst and IMF found to be -0.6 for solar cycle 24


2017 ◽  
Vol 3 (2) ◽  
pp. 20-24 ◽  
Author(s):  
Петр Гололобов ◽  
Peter Gololobov ◽  
Прокопий Кривошапкин ◽  
Prokopy Krivoshapkin ◽  
Гермоген Крымский ◽  
...  

The observable anisotropy of cosmic rays has first been decomposed into zonal harmonics and components of vector and tensor anisotropy. We examine Forbush decreases in cosmic rays that occurred in November 2001 and November 2004. It is shown that at the beginning of a Forbush decrease an antisunward convective current of cosmic rays predominates; and during the recovery phase, a sunward diffusive current of particles along the interplanetary magnetic field dominates. During the phase of intensity drop, short-time decreases in the second zonal harmonic take place. These decreases occur with abrupt changes of the interplanetary magnetic field intensity and solar wind speed. During the passage of large-scale solar wind disturbances, the tensor anisotropy behaves in a complicated way. To explain its behavior, a further detailed investigation is required.


2017 ◽  
Vol 3 (2) ◽  
pp. 22-26
Author(s):  
Петр Гололобов ◽  
Peter Gololobov ◽  
Прокопий Кривошапкин ◽  
Prokopy Krivoshapkin ◽  
Гермоген Крымский ◽  
...  

The observable anisotropy of cosmic rays has first been decomposed into zonal harmonics and components of vector and tensor anisotropy. We examine Forbush decreases in cosmic rays that occurred in November 2001 and November 2004. It is shown that at the beginning of a Forbush decrease an antisunward convective current of cosmic rays predominates; and during the recovery phase, a sunward diffusive current of particles along the interplanetary magnetic field dominates. During the phase of intensity drop, short-time decreases in the second zonal harmonic take place. These decreases occur with abrupt changes of the interplanetary magnetic field intensity and solar wind speed. During the passage of large-scale solar wind disturbances, the tensor anisotropy behaves in a complicated way. To explain its behavior, a further detailed investigation is required.


2005 ◽  
Vol 23 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
S. E. Milan

Abstract. Dayside UV emissions in Saturn's polar ionosphere have been suggested to be the first observational evidence of the kronian "cusp" (Gérard et al., 2004). The emission has two distinct states. The first is a bright arc-like feature located in the pre-noon sector, and the second is a more diffuse "spot" of aurora which lies poleward of the general location of the main auroral oval, which may be related to different upstream interplanetary magnetic field (IMF) orientations. Here we take up the suggestion that these emissions correspond to the cusp. However, direct precipitation of electrons in the cusp regions is not capable of producing significant UV aurora. We have therefore investigated the possibility that the observed UV emissions are associated with reconnection occurring at the dayside magnetopause, possibly pulsed, akin to flux transfer events seen at the Earth. We devise a conceptual model of pulsed reconnection at the low-latitude dayside magnetopause for the case of northwards IMF which will give rise to pulsed twin-vortical flows in the magnetosphere and ionosphere in the vicinity of the open-closed field-line boundary, and hence to bi-polar field-aligned currents centred in the vortical flows. During intervals of high-latitude lobe reconnection for southward IMF, we also expect to have pulsed twin-vortical flows and corresponding bi-polar field-aligned currents. The vortical flows in this case, however, are displaced poleward of the open-closed field line boundary, and are reversed in sense, such that the field-aligned currents are also reversed. For both cases of northward and southward IMF we have also for the first time included the effects associated with the IMF By effect. We also include the modulation introduced by the structured nature of the solar wind and IMF at Saturn's orbit by developing "slow" and "fast" flow models corresponding to intermediate and high strength IMF respectively. We then consider the conditions under which the plasma populations appropriate to either sub-solar reconnection or high-latitude lobe reconnection can carry the currents indicated. We have estimated the field-aligned voltages required, the resulting precipitating particle energy fluxes, and the consequent auroral output. Overall our model of pulsed reconnection under conditions of northwards and southwards IMF, and for varying orientations of IMF By, is found to produce a range of UV emission intensities and geometries which is in good agreement with the data presented by Gérard et al. (2004). The recent HST-Cassini solar wind campaign provides a unique opportunity to test the theoretical ideas presented here.


Sign in / Sign up

Export Citation Format

Share Document