Mechanical Properties of Sprayable Fiber Reinforced Strain-Hardening Cement Composite (SHCC) for Seismic Retrofitting of Existing Infrastructures

Author(s):  
Zhong-Jie Yu ◽  
Seung-Ju Han ◽  
Hyun-Do Yun
2013 ◽  
Vol 372 ◽  
pp. 211-214
Author(s):  
Zhong Jie Yu ◽  
Mi Hwa Lee ◽  
Hyun Do Yun

The use of strain-hardening cement composite (SHCC), which exhibits metal-like deformation behavior and has ability to restrict crack opening, as a retrofit material for seismic retrofitting of existing infrastructures, has been the subject of high expectations. In this work, Three SHCC mixtures including different chemical or mineral admixtures were prepared and evaluated based on the mechanical properties, such as flow, sprayability, compressive and uniaxial tensile performances. All SHCC mixtures were reinforced with polyvinyl alcohol (PVA) fibers at volume fraction of 2.2%. Mechanical properties of each SHCC mixture were measured and evaluated after mixing, pumping, and shotcreting. Experimental results indicated that the compressive strength and elastic modulus of three SHCC mixtures increased almost linearly according to shotcreting procedure from mixer to nozzle. And the uniaxial tensile of SHCC mixture (SHCC-AE) with AE agent was superior to the other SHCC mixtures (SHCC-MC and-N).


Author(s):  
Duy-Liem Nguyen ◽  
Thac-Quang Nguyen ◽  
Huynh-Tan-Tai Nguyen

This research deals with the influences of macro, meso and micro steel-smooth fibers on tensile and compressive properties of strain-hardening fiber-reinforced concretes (SFCs). The different sizes, indicated by length/diameter ratio, of steel-smooth fiber added in plain matrix (Pl) were as follows: 30/0.3 for the macro (Ma), 19/0.2 for the meso (Me) and 13/0.2 for the micro fiber (Mi). All SFCs were used the same fiber volume fraction of 1.5%. The compressive specimen was cylinder-shaped with diameter × height of 150 × 200 mm, the tensile specimen was bell-shaped with effective dimensions of 25 × 50 × 100 mm (thickness × width × gauge length). Although the adding fibers in plain matrix of SFCs produced the tensile strain-hardening behaviors accompanied by multiple micro-cracks, the significances in enhancing different mechanical properties of the SFCs were different. Firstly, under both tension and compression, the macro fibers produced the best performance in terms of strength, strain capacity and toughness whereas the micro produced the worst of them. Secondly, the adding fibers in plain matrix produced more favorable influences on tensile properties than compressive properties. Thirdly, the most sensitive parameter was observed to be the tensile toughness. Finally, the correlation between tensile strength and compressive strength of the studied SFCs were also reported. Keywords: aspect ratio; strain-hardening; post-cracking; ductility; fiber size.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Wonchang Choi ◽  
Seok-Joon Jang ◽  
Hyun-Do Yun

This research investigates the interfacial behavior between polyethylene (PE) fiber-reinforced strain-hardening cement composite (PE-SHCC) and reinforcing bars that are spliced in the tension region to determine feasibility of reduced lap-spliced length in PE-SHCC. Twenty test specimens were subjected to monotonic and cyclic tension loads. The variables include the replacement levels of an expansive admixture (0% and 10%), the compressive strength of the SHCC mixtures (40 MPa and 80 MPa), and the lap-spliced length in the tension region (40% and 60% of the splice length recommended by ACI 318). The PE-SHCC mixture contains polyethylene fiber to enhance the tensile strength, control the widths of the cracks, and increase the bond strength of the lap splice reinforcement and the calcium sulfo-aluminate- (CSA-) based expansive admixture to improve the tension-related performance in the lap splice zone. The results have led to the conclusion that SHCC mixtures can be used effectively to reduce the development length of lap splice reinforcement up to 60% of the splice length that is recommended by ACI 318. The addition of the calcium sulfo-aluminate-based expansive admixture in the SHCC mixtures improved the initial performance and mitigated the cracking behavior in the lap splice region.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Seok-Joon Jang ◽  
Sun-Woo Kim ◽  
Wan-Shin Park ◽  
Koichi Kobayashi ◽  
Hyun-Do Yun

This paper describes the effects of expansive admixture on the mechanical properties of strain-hardening cement-based composite (SHCC) mixtures. Also, this study investigates structural performance of reinforced concrete (RC) beam specimens repaired with SHCC and Ex-SHCC (SHCC with expansive admixture). In this study, SHCC and Ex-SHCC mixtures with two specified compressive strength values of 30 MPa and 60 MPa and the fiber volume fraction of 1.5% were investigated. The expansive admixture replacement ratio of 10% by cement weight was used in this study. The test results indicate that the compressive, tensile, and flexural strength values of the SHCC mixtures increased when expansive admixture was included in the mix; however, their toughness and ductility decreased. The study results also show that the application of both SHCC and Ex-SHCC mixtures to repair damaged RC beam specimens can lead to significant structural performance improvement by mitigating crack damage and increasing ductility.


2013 ◽  
Vol 372 ◽  
pp. 219-222
Author(s):  
Yeon Jun Yun ◽  
Seok Joon Jang ◽  
Hyun Do Yun

This work evaluated the applicability of polyethylene (PE) fiber reinforced strain-hardening cement composite (PE-SHCC) layer at the bottom of reinforced concrete (RC) beams to improve the flexural performance and cracking behavior. PE-SHCC material with specific compressive strength of 70MPa was reinforced with 1.5% PE fibers at the volume fraction. Four RC beams with cross-section of 130 x 170mm and length of 1,460mm were made and tested under four-point monotonic loading. Three beams were layered with PE-SHCC material and one whole RC beam was a control specimen for comparison. Principal variable is the thickness of PE-SHCC layer; 20, 40 and 60mm that are equivalent to 11, 23 and 35% of beams depth. Experimental results indicated that the addition of PE-SHCC layer enhanced the crack-damage mitigation of RC beams and improve the structural behavior, such as strength and ductility, of RC beams.


Sign in / Sign up

Export Citation Format

Share Document