scholarly journals Non-Gaussian Estimation of Nonlinear Continuous-discrete Models: Application of Ensemble Kalman Filter

Author(s):  
Masaya Murata ◽  
Kaoru Hiramatsu
2018 ◽  
Author(s):  
◽  
Tao Sun

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Nonlinear estimation and filtering have been intensively studied for decades since it has been widely used in engineering and science such as navigation, radar signal processing and target tracking systems. Because the posterior density function is not a Gaussian distribution, then the optimal solution is intractable. The nonlinear/non-Gaussian estimation problem is more challenging than the linear/Gaussian case, which has an optimal closed form solution, i.e. the celebrated Kalman filter. Many nonlinear filters including the extended Kalman filter, the unscented Kalman filter and the Gaussian-approximation filters, have been proposed to address nonlinear/non-Gaussian estimation problems in the past decades. Although the estimate yield by Gaussian-approximation filters such as cubature Kalman filters and Gaussian-Hermite quadrature filters is satisfied in many applications, there are two obvious drawbacks embedded in the use of Gaussian filters. On the one hand, with the increase of the quadrature points, much computational effort is devoted to approximate Gaussian integrals, which is not worthy sometimes. On the other hand, by the use of the update rule, the estimate constrains to be a linear function of the observation. In this dissertation, we aim to address this two shortcoming associated with the conventional nonlinear filters. We propose two nonlinear filters in the dissertation. Based on an adaptive strategy, the first one tries to reduce the computation cost during filtering without sacrificing much accuracy, because when the system is close to be linear, the lower level Gaussian quadrature filter is sufficient to provide accurate estimate. The adaptive strategy is used to evaluate the nonlinearity of the system at current time first and then utilize different quadrature rule for filtering. Another filter aims to modify the conventional update rule, i.e. the linear minimum mean square error (LMMSE) rule, to involve a nonlinear transformation of the observation, which is proven to be an efficient way to exploit more information from the original observation. According to the orthogonal property, we propose a novel approach to construct the nonlinear transformation systematically. The augmented nonlinear filter outperforms Gaussian filters and other conventional augmented filters in terms of the root mean square error and onsistency. Furthermore, we also extend the work to the more general case. The higher order moments can be utilized to construct the nonlinear transformation and in turn, the measurement space can be expand efficiently. Without the Gaussian assumption, the construction of the nonlinear transformation only demand the existence of a finite number of moments. Finally, the simulation results validate and demonstrate the superiority of the adaptive and augmented nonlinear filters.


2017 ◽  
Vol 145 (5) ◽  
pp. 1897-1918 ◽  
Author(s):  
Jonathan Poterjoy ◽  
Ryan A. Sobash ◽  
Jeffrey L. Anderson

Abstract Particle filters (PFs) are Monte Carlo data assimilation techniques that operate with no parametric assumptions for prior and posterior errors. A data assimilation method introduced recently, called the local PF, approximates the PF solution within neighborhoods of observations, thus allowing for its use in high-dimensional systems. The current study explores the potential of the local PF for atmospheric data assimilation through cloud-permitting numerical experiments performed for an idealized squall line. Using only 100 ensemble members, experiments using the local PF to assimilate simulated radar measurements demonstrate that the method provides accurate analyses at a cost comparable to ensemble filters currently used in weather models. Comparisons between the local PF and an ensemble Kalman filter demonstrate benefits of the local PF for producing probabilistic analyses of non-Gaussian variables, such as hydrometeor mixing ratios. The local PF also provides more accurate forecasts than the ensemble Kalman filter, despite yielding higher posterior root-mean-square errors. A major advantage of the local PF comes from its ability to produce more physically consistent posterior members than the ensemble Kalman filter, which leads to fewer spurious model adjustments during forecasts. This manuscript presents the first successful application of the local PF in a weather prediction model and discusses implications for real applications where nonlinear measurement operators and nonlinear model processes limit the effectiveness of current Gaussian data assimilation techniques.


2010 ◽  
Vol 138 (11) ◽  
pp. 4186-4198 ◽  
Author(s):  
Jeffrey L. Anderson

Abstract A deterministic square root ensemble Kalman filter and a stochastic perturbed observation ensemble Kalman filter are used for data assimilation in both linear and nonlinear single variable dynamical systems. For the linear system, the deterministic filter is simply a method for computing the Kalman filter and is optimal while the stochastic filter has suboptimal performance due to sampling error. For the nonlinear system, the deterministic filter has increasing error as ensemble size increases because all ensemble members but one become tightly clustered. In this case, the stochastic filter performs better for sufficiently large ensembles. A new method for computing ensemble increments in observation space is proposed that does not suffer from the pathological behavior of the deterministic filter while avoiding much of the sampling error of the stochastic filter. This filter uses the order statistics of the prior observation space ensemble to create an approximate continuous prior probability distribution in a fashion analogous to the use of rank histograms for ensemble forecast evaluation. This rank histogram filter can represent non-Gaussian observation space priors and posteriors and is shown to be competitive with existing filters for problems as large as global numerical weather prediction. The ability to represent non-Gaussian distributions is useful for a variety of applications such as convective-scale assimilation and assimilation of bounded quantities such as relative humidity.


2007 ◽  
Vol 135 (5) ◽  
pp. 1828-1845 ◽  
Author(s):  
Yongsheng Chen ◽  
Chris Snyder

Abstract Observations of hurricane position, which in practice might be available from satellite or radar imagery, can be easily assimilated with an ensemble Kalman filter (EnKF) given an operator that computes the position of the vortex in the background forecast. The simple linear updating scheme used in the EnKF is effective for small displacements of forecasted vortices from the true position; this situation is operationally relevant since hurricane position is often available frequently in time. When displacements of the forecasted vortices are comparable to the vortex size, non-Gaussian effects become significant and the EnKF’s linear update begins to degrade. Simulations using a simple two-dimensional barotropic model demonstrate the potential of the technique and show that the track forecast initialized with the EnKF analysis is improved. The assimilation of observations of the vortex shape and intensity, along with position, extends the technique’s effectiveness to larger displacements of the forecasted vortices than when assimilating position alone.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248266
Author(s):  
Ian Grooms ◽  
Gregor Robinson

A hybrid particle ensemble Kalman filter is developed for problems with medium non-Gaussianity, i.e. problems where the prior is very non-Gaussian but the posterior is approximately Gaussian. Such situations arise, e.g., when nonlinear dynamics produce a non-Gaussian forecast but a tight Gaussian likelihood leads to a nearly-Gaussian posterior. The hybrid filter starts by factoring the likelihood. First the particle filter assimilates the observations with one factor of the likelihood to produce an intermediate prior that is close to Gaussian, and then the ensemble Kalman filter completes the assimilation with the remaining factor. How the likelihood gets split between the two stages is determined in such a way to ensure that the particle filter avoids collapse, and particle degeneracy is broken by a mean-preserving random orthogonal transformation. The hybrid is tested in a simple two-dimensional (2D) problem and a multiscale system of ODEs motivated by the Lorenz-‘96 model. In the 2D problem it outperforms both a pure particle filter and a pure ensemble Kalman filter, and in the multiscale Lorenz-‘96 model it is shown to outperform a pure ensemble Kalman filter, provided that the ensemble size is large enough.


2011 ◽  
Vol 139 (12) ◽  
pp. 3964-3973 ◽  
Author(s):  
Jing Lei ◽  
Peter Bickel

Abstract The ensemble Kalman filter is now an important component of ensemble forecasting. While using the linear relationship between the observation and state variables makes it applicable for large systems, relying on linearity introduces nonnegligible bias since the true distribution will never be Gaussian. This paper analyzes the bias of the ensemble Kalman filter from a statistical perspective and proposes a debiasing method called the nonlinear ensemble adjustment filter. This new filter transforms the forecast ensemble in a statistically principled manner so that the updated ensemble has the desired mean and variance. It is also easily localizable and, hence, potentially useful for large systems. Its performance is demonstrated and compared with other Kalman filter and particle filter variants through various experiments on the Lorenz-63 and Lorenz-96 systems. The results show that the new filter is stable and accurate for challenging situations such as nonlinear, high-dimensional systems with sparse observations.


Sign in / Sign up

Export Citation Format

Share Document