scholarly journals Convective-Scale Data Assimilation for the Weather Research and Forecasting Model Using the Local Particle Filter

2017 ◽  
Vol 145 (5) ◽  
pp. 1897-1918 ◽  
Author(s):  
Jonathan Poterjoy ◽  
Ryan A. Sobash ◽  
Jeffrey L. Anderson

Abstract Particle filters (PFs) are Monte Carlo data assimilation techniques that operate with no parametric assumptions for prior and posterior errors. A data assimilation method introduced recently, called the local PF, approximates the PF solution within neighborhoods of observations, thus allowing for its use in high-dimensional systems. The current study explores the potential of the local PF for atmospheric data assimilation through cloud-permitting numerical experiments performed for an idealized squall line. Using only 100 ensemble members, experiments using the local PF to assimilate simulated radar measurements demonstrate that the method provides accurate analyses at a cost comparable to ensemble filters currently used in weather models. Comparisons between the local PF and an ensemble Kalman filter demonstrate benefits of the local PF for producing probabilistic analyses of non-Gaussian variables, such as hydrometeor mixing ratios. The local PF also provides more accurate forecasts than the ensemble Kalman filter, despite yielding higher posterior root-mean-square errors. A major advantage of the local PF comes from its ability to produce more physically consistent posterior members than the ensemble Kalman filter, which leads to fewer spurious model adjustments during forecasts. This manuscript presents the first successful application of the local PF in a weather prediction model and discusses implications for real applications where nonlinear measurement operators and nonlinear model processes limit the effectiveness of current Gaussian data assimilation techniques.

2010 ◽  
Vol 138 (11) ◽  
pp. 4186-4198 ◽  
Author(s):  
Jeffrey L. Anderson

Abstract A deterministic square root ensemble Kalman filter and a stochastic perturbed observation ensemble Kalman filter are used for data assimilation in both linear and nonlinear single variable dynamical systems. For the linear system, the deterministic filter is simply a method for computing the Kalman filter and is optimal while the stochastic filter has suboptimal performance due to sampling error. For the nonlinear system, the deterministic filter has increasing error as ensemble size increases because all ensemble members but one become tightly clustered. In this case, the stochastic filter performs better for sufficiently large ensembles. A new method for computing ensemble increments in observation space is proposed that does not suffer from the pathological behavior of the deterministic filter while avoiding much of the sampling error of the stochastic filter. This filter uses the order statistics of the prior observation space ensemble to create an approximate continuous prior probability distribution in a fashion analogous to the use of rank histograms for ensemble forecast evaluation. This rank histogram filter can represent non-Gaussian observation space priors and posteriors and is shown to be competitive with existing filters for problems as large as global numerical weather prediction. The ability to represent non-Gaussian distributions is useful for a variety of applications such as convective-scale assimilation and assimilation of bounded quantities such as relative humidity.


2013 ◽  
Vol 141 (3) ◽  
pp. 900-917 ◽  
Author(s):  
Fuqing Zhang ◽  
Meng Zhang ◽  
Jonathan Poterjoy

Abstract This study examines the performance of a hybrid ensemble-variational data assimilation system (E3DVar) that couples an ensemble Kalman filter (EnKF) with the three-dimensional variational data assimilation (3DVar) system for the Weather Research and Forecasting (WRF) Model. The performance of E3DVar and the component EnKF and 3DVar systems are compared over the eastern United States for June 2003. Conventional sounding and surface observations as well as data from wind profilers, aircraft and ships, and cloud-tracked winds from satellites, are assimilated every 6 h during the experiments, and forecasts are verified using standard sounding observations. Forecasts with 12- to 72-h lead times are found to have noticeably smaller root-mean-square errors when initialized with the E3DVar system, as opposed to the EnKF, especially for the 12-h wind and moisture fields. The E3DVar system demonstrates similar performance as an EnKF, while using less than half the number of ensemble members, and is less sensitive to the use of a multiphysics ensemble to account for model errors. The E3DVar system is also compared with a similar hybrid method that replaces the 3DVar component with the WRF four-dimensional variational data assimilation (4DVar) method (denoted E4DVar). The E4DVar method demonstrated considerable improvements over E3DVar for nearly all model levels and variables at the shorter forecast lead times (12–48 h), but the forecast accuracies of all three ensemble-based methods (EnKF, E3DVar, and E4DVar) converge to similar results at longer lead times (60–72 h). Nevertheless, all methods that used ensemble information produced considerably better forecasts than the two methods that relied solely on static background error covariance (i.e., 3DVar and 4DVar).


2016 ◽  
Vol 144 (8) ◽  
pp. 2927-2945
Author(s):  
Nedjeljka Žagar ◽  
Jeffrey Anderson ◽  
Nancy Collins ◽  
Timothy Hoar ◽  
Kevin Raeder ◽  
...  

Abstract Global data assimilation systems for numerical weather prediction (NWP) are characterized by significant uncertainties in tropical analysis fields. Furthermore, the largest spread of global ensemble forecasts in the short range on all scales is in the tropics. The presented results suggest that these properties hold even in the perfect-model framework and the ensemble Kalman filter data assimilation with a globally homogeneous network of wind and temperature profiles. The reasons for this are discussed by using the modal analysis, which provides information about the scale dependency of analysis and forecast uncertainties and information about the efficiency of data assimilation to reduce the prior uncertainties in the balanced and inertio-gravity dynamics. The scale-dependent representation of variance reduction of the prior ensemble by the data assimilation shows that the peak efficiency of data assimilation is on the synoptic scales in the midlatitudes that are associated with quasigeostrophic dynamics. In contrast, the variance associated with the inertia–gravity modes is less successfully reduced on all scales. A smaller information content of observations on planetary scales with respect to the synoptic scales is discussed in relation to the large-scale tropical uncertainties that current data assimilation methodologies do not address successfully. In addition, it is shown that a smaller reduction of the large-scale uncertainties in the prior state for NWP in the tropics than in the midlatitudes is influenced by the applied radius for the covariance localization.


2019 ◽  
Vol 1127 ◽  
pp. 012041
Author(s):  
N J Trilaksono ◽  
M Taqiyya ◽  
N Dewani ◽  
I D G A Junnaedhi ◽  
E Riawan ◽  
...  

2012 ◽  
Vol 140 (2) ◽  
pp. 587-600 ◽  
Author(s):  
Meng Zhang ◽  
Fuqing Zhang

A hybrid data assimilation approach that couples the ensemble Kalman filter (EnKF) and four-dimensional variational (4DVar) methods is implemented for the first time in a limited-area weather prediction model. In this coupled system, denoted E4DVar, the EnKF and 4DVar systems run in parallel while feeding into each other. The multivariate, flow-dependent background error covariance estimated from the EnKF ensemble is used in the 4DVar minimization and the ensemble mean in the EnKF analysis is replaced by the 4DVar analysis, while updating the analysis perturbations for the next cycle of ensemble forecasts with the EnKF. Therefore, the E4DVar can obtain flow-dependent information from both the explicit covariance matrix derived from ensemble forecasts, as well as implicitly from the 4DVar trajectory. The performance of an E4DVar system is compared with the uncoupled 4DVar and EnKF for a limited-area model by assimilating various conventional observations over the contiguous United States for June 2003. After verifying the forecasts from each analysis against standard sounding observations, it is found that the E4DVar substantially outperforms both the EnKF and 4DVar during this active summer month, which featured several episodes of severe convective weather. On average, the forecasts produced from E4DVar analyses have considerably smaller errors than both of the stand-alone EnKF and 4DVar systems for forecast lead times up to 60 h.


2011 ◽  
Vol 11 (24) ◽  
pp. 12901-12916 ◽  
Author(s):  
X. Tang ◽  
J. Zhu ◽  
Z. F. Wang ◽  
A. Gbaguidi

Abstract. In order to improve the surface ozone forecast over Beijing and surrounding regions, data assimilation method integrated into a high-resolution regional air quality model and a regional air quality monitoring network are employed. Several advanced data assimilation strategies based on ensemble Kalman filter are designed to adjust O3 initial conditions, NOx initial conditions and emissions, VOCs initial conditions and emissions separately or jointly through assimilating ozone observations. As a result, adjusting precursor initial conditions demonstrates potential improvement of the 1-h ozone forecast almost as great as shown by adjusting precursor emissions. Nevertheless, either adjusting precursor initial conditions or emissions show deficiency in improving the short-term ozone forecast at suburban areas. Adjusting ozone initial values brings significant improvement to the 1-h ozone forecast, and its limitations lie in the difficulty in improving the 1-h forecast at some urban site. A simultaneous adjustment of the above five variables is found to be able to reduce these limitations and display an overall better performance in improving both the 1-h and 24-h ozone forecast over these areas. The root mean square errors of 1-h ozone forecast at urban sites and suburban sites decrease by 51% and 58% respectively compared with those in free run. Through these experiments, we found that assimilating local ozone observations is determinant for ozone forecast over the observational area, while assimilating remote ozone observations could reduce the uncertainty in regional transport ozone.


2005 ◽  
Vol 133 (11) ◽  
pp. 3081-3094 ◽  
Author(s):  
A. Caya ◽  
J. Sun ◽  
C. Snyder

Abstract A four-dimensional variational data assimilation (4DVAR) algorithm is compared to an ensemble Kalman filter (EnKF) for the assimilation of radar data at the convective scale. Using a cloud-resolving model, simulated, imperfect radar observations of a supercell storm are assimilated under the assumption of a perfect forecast model. Overall, both assimilation schemes perform well and are able to recover the supercell with comparable accuracy, given radial-velocity and reflectivity observations where rain was present. 4DVAR produces generally better analyses than the EnKF given observations limited to a period of 10 min (or three volume scans), particularly for the wind components. In contrast, the EnKF typically produces better analyses than 4DVAR after several assimilation cycles, especially for model variables not functionally related to the observations. The advantages of the EnKF in later cycles arise at least in part from the fact that the 4DVAR scheme implemented here does not use a forecast from a previous cycle as background or evolve its error covariance. Possible reasons for the initial advantage of 4DVAR are deficiencies in the initial ensemble used by the EnKF, the temporal smoothness constraint used in 4DVAR, and nonlinearities in the evolution of forecast errors over the assimilation window.


2014 ◽  
Vol 142 (4) ◽  
pp. 1489-1508 ◽  
Author(s):  
So-Young Ha ◽  
Chris Snyder

Abstract The assimilation of surface observations using an ensemble Kalman filter (EnKF) approach was successfully performed in the Advanced Research version of the Weather Research and Forecasting Model (WRF) coupled with the Data Assimilation Research Testbed (DART) system. The mesoscale cycling experiment for the continuous ensemble data assimilation was verified against independent surface mesonet observations and demonstrated the positive impact on short-range forecasts over the contiguous U.S. (CONUS) domain throughout the month-long period of June 2008. The EnKF assimilation of surface observations was found useful for systematically improving the simulation of the depth and the structure of the planetary boundary layer (PBL) and the reduction of surface bias errors. These benefits were extended above PBL and resulted in a better precipitation forecast for up to 12 h. With the careful specification of observation errors, not only the reliability of the ensemble system but also the quality of the following forecast was improved, especially in moisture. In this retrospective case study of a squall line, assimilation of surface observations produced analysis increments consistent with the structure and dynamics of the boundary layer. As a result, it enhanced the horizontal gradient of temperature and moisture across the frontal system to provide a favorable condition for the convective initiation and the following heavy rainfall prediction in the Oklahoma Panhandle. Even with the assimilation of upper-level observations, the analysis without the assimilation of surface observations simulated a surface cold front that was much weaker and slower than observed.


2014 ◽  
Vol 71 (2) ◽  
pp. 469-482 ◽  
Author(s):  
Hailiang Du ◽  
Leonard A. Smith

Abstract State estimation lies at the heart of many meteorological tasks. Pseudo-orbit-based data assimilation provides an attractive alternative approach to data assimilation in nonlinear systems such as weather forecasting models. In the perfect model scenario, noisy observations prevent a precise estimate of the current state. In this setting, ensemble Kalman filter approaches are hampered by their foundational assumptions of dynamical linearity, while variational approaches may fail in practice owing to local minima in their cost function. The pseudo-orbit data assimilation approach improves state estimation by enhancing the balance between the information derived from the dynamic equations and that derived from the observations. The potential use of this approach for numerical weather prediction is explored in the perfect model scenario within two deterministic chaotic systems: the two-dimensional Ikeda map and 18-dimensional Lorenz96 flow. Empirical results demonstrate improved performance over that of the two most common traditional approaches of data assimilation (ensemble Kalman filter and four-dimensional variational assimilation).


Sign in / Sign up

Export Citation Format

Share Document