scholarly journals Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria

2017 ◽  
Vol 30 (11) ◽  
pp. 1568-1574 ◽  
Author(s):  
Waroon Khota ◽  
Suradej Pholsen ◽  
David Higgs ◽  
Yimin Cai
2019 ◽  
Vol 18 (1) ◽  
pp. 1438-1444 ◽  
Author(s):  
Smerjai Bureenok ◽  
Sioudome Langsoumechai ◽  
Nittaya Pitiwittayakul ◽  
Chalermpon Yuangklang ◽  
Kraisit Vasupen ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Chae Eun Song ◽  
Han Hyo Shim ◽  
Palaniselvam Kuppusamy ◽  
Young-IL Jeong ◽  
Kyung Dong Lee

The objective of this study was to investigate alginate microencapsulated lactic acid bacteria (LAB) fermentation quality of radish kimchi sample and its potential survivability in different acidic and alkaline environments. Initially, we isolated 45 LAB strains. One of them showed fast growth pattern with potential probiotic and antifungal activities against Aspergillus flavus with a zone of inhibition calculated with 10, 8, 4mm for the 4th, 5th, and 6th day, respectively. Therefore, this strain (KCC-42) was chosen for microencapsulation with alginate biopolymer. It showed potential survivability in in-vitro simulated gastrointestinal fluid and radish kimchi fermentation medium. The survival rate of this free and encapsulated LAB KCC-42 was 6.85 × 105 and 7.48× 105 CFU/ml, respectively; the viability count was significantly higher than nonencapsulated LAB in simulated gastrointestinal juices (acid, bile, and pancreatin) and under radish kimchi fermentation environment. Kimchi sample added with this encapsulated LAB showed increased production of organic acids compared to nonencapsulated LAB sample. Also, the organic acids such as lactic acid, acetic acid, propionic acid, and succinic acid production in fermented kimchi were measured 59mM, 26mM, 14mM, and 0.6mM of g/DW, respectively. The production of metabolites such as lactic acid, acetic acid, and succinic acid and the bacteria population was high in microencapsulated LAB samples compared with free bacteria added kimchi sample. Results of this study indicate that microencapsulated LAB KCC-42 might be a useful strategy to develop products for food and healthcare industries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chatchai Kaewpila ◽  
Pongsatorn Gunun ◽  
Piyawit Kesorn ◽  
Sayan Subepang ◽  
Suwit Thip‑uten ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2021 ◽  
Vol 9 (1) ◽  
pp. 114
Author(s):  
Yixiao Xie ◽  
Jingui Guo ◽  
Wenqi Li ◽  
Zhe Wu ◽  
Zhu Yu

Two lactic acid bacteria (LAB) strains with different ferulic acid esterase (FAE) activities were isolated: Lactobacillus farciminis (LF18) and Lactobacillus plantarum (LP23). The effects of these strains on the fermentation quality, in vitro digestibility and phenolic acid extraction yields of sorghum (Sorghum bicolor L.) silage were studied at 20, 30 and 40 °C. Sorghum was ensiled with no additive (control), LF18 or LP23 for 45 days. At 40 °C, the lactic acid content decreased, whereas the ammonia nitrogen (NH3-N) content significantly increased (p < 0.05). At all three temperatures, the inoculants significantly improved the lactic acid contents and reduced the NH3-N contents (p < 0.05). Neither LP23 nor LF18 significantly improved the digestibility of sorghum silages (p > 0.05). The LP23 group exhibited higher phenolic acid extraction yields at 30 °C (p < 0.05), and the corresponding yields of the LF18 and control groups were improved at 40 °C (p < 0.05). FAE-producing LABs might partially ameliorate the negative effects of high temperature and improve the fermentation quality of sorghum silage. The screened FAE-producing LABs could be candidate strains for preserving sorghum silage at high temperature, and some further insights into the relationship between FAE-producing LABs and ensiling temperatures were obtained.


2021 ◽  
Vol 8 (6) ◽  
pp. 100
Author(s):  
Ehsan Oskoueian ◽  
Mohammad Faseleh Jahromi ◽  
Saeid Jafari ◽  
Majid Shakeri ◽  
Hieu Huu Le ◽  
...  

Bacterial inoculants are known to improve the quality of silage. The objectives of the present study were to evaluate the effects of different types of lactic acid bacteria (LAB; L. plantarum, L. salivarius, L. reuteri, L. brevi, and S. bovis) inoculation (106 cfu/ DM) on rice straw silage quality and to determine these effects on ruminal fermentation characteristics, digestibility and microbial populations in an in vitro condition. Inoculated rice straw was ensiled for 15 and 30 days. For the in vitro study, rumen fluid was obtained from three rumen-fistulated bulls fed on mixed forage and concentrate at 60:40 ratio twice daily. Inoculation with LAB improved (p < 0.05) the rice straw silage quality as indicated by higher dry matter and crude protein contents, decreased pH and butyric acid, and increased propionic acid and LAB numbers, especially after 30 days of ensiling. Results from the in vitro study revealed that starting with the addition of LAB to rice straw silage improved in vitro fermentation characteristics such as increased total volatile fatty acids and dry matter digestibility (p < 0.05). LAB treatments also decreased methane production and methane/total gas ratio after 15 and 30 days of ensiling. From the rumen microbial population perspective, cellulolytic, and fungal zoospores were enhanced, while protozoa and methanogens were decreased by the LAB treatments. Based on these results, it could be concluded that inoculating rice straw silage with LAB (especially for L. plantarum and S. bovis) improved silage quality, rumen fermentation parameters and microbial populations in vitro.


Sign in / Sign up

Export Citation Format

Share Document