Description and Quantification of Sexual Dimorphism of Pubic Body Shape in Hispanic Populations Using Elliptic Fourier Analysis

2021 ◽  
Author(s):  
Erica Cantor ◽  
Krista Latham ◽  
Stephen Nawrocki

Sex estimation is important in the creation of a biological profile for unidentified human remains, as positive identification cannot occur until the decedent’s biological traits have been determined and the range of possible matches has been narrowed. The pubic bone is cited as one of the best indicators of sex due to the constraints of childbirth. Current methods that use the pubic bone for sex estimation, however, rely on poorly defined and subjective observations that are susceptible to inter-and intraobserver error. Additionally, many of the methods currently in use are based on North American populations and thus may not necessarily model the variation seen in other populations around the globe. The aim of this study is to gain a better understanding of variation in pubic bone shape in Hispanic populations by separating the influences of sex, ancestry, and age at death. A total of 164 pubic bones from North American Hispanic and Chilean individuals were compared to 287 pubic bones from individuals of Euro-American ancestry from North American collections, using Elliptic Fourier analysis (EFA) of photographs, principal component analysis, and ANCOVA. EFA generated five effective principal components that collectively describe approximately 95% of the variation in the shape of the pubic body. Sex, age at death, and ancestry were all found to significantly influence shape but explained only 25% of the overall variation. The remaining 75% is likely influenced by variables that cannot be controlled for in anthropological analysis, underscoring how little variance in skeletal morphology is actually explainable.

2019 ◽  
Vol 17 (6) ◽  
pp. 480-487
Author(s):  
Renerio P. Gentallan ◽  
Nestor C. Altoveros ◽  
Teresita H. Borromeo ◽  
Leah E. Endonela ◽  
Fiona R. Hay ◽  
...  

AbstractThis research attempts to systematically establish shape descriptor states through elliptic Fourier analysis (EFA) using pili (Canarium ovatum Engl.) kernel as a model. Kernel images of 53 pili accessions from the National Plant Genetic Resources Laboratory (NPGRL), University of the Philippines Los Baños were acquired using VideometerLab 3. Shape features, such as roundness, compactness and elongation, were extracted from the images. Shapes outlines were characterized using elliptic Fourier coefficients calculated from SHAPE version 1.3 software. Principal component analysis and cluster analysis were used to elucidate clusters representing the shape descriptor states. The first principal component accounts for the variation in length to width ratio; whereas, the second and third principal components explain the variation in the location of the widest portion and the truncation of the apex and base of the kernel, respectively. Cluster analysis separated the different accessions into six distinct clusters at 0.04 Euclidian distance. Six descriptor states, narrowly elliptic, elliptic, widely elliptic, ovate, obovate and lance-ovate, were characterized from the shape outlines and visualized through R's shape on r package. The discrimination between clusters was validated through MANOVA and LDA with 95% correct classification. The Fourier coefficients were also able to represent the variation observed from the physical properties of shape. The method may be used in establishing shape descriptors of all plant parts of all crop species.


1998 ◽  
Vol 16 (6) ◽  
pp. 758-765 ◽  
Author(s):  
Chiarella Sforza ◽  
Giovanni Michielon ◽  
Nicola Fragnito ◽  
Virgilio F. Ferrario

2021 ◽  
Author(s):  
Valda Black

Creating and testing efficient techniques for the sex estimation of modern human skeletal remains has been a significant focus in biological anthropology. It is well established that the innominate, particularly the pubic bone, is a sexually dimorphic part of the human skeleton, but prone to fragmentation. Using modern pubic bones of known age and sex, this study aims to capture shape differences using geometric morphometrics (GMM) to test classification accuracy of segments of the pubic bone. The sample consists of 70 left adult pubic bones from the William M. Bass Donated Skeletal Collection, with 35 males and 35 females of mixed age and population affinity. Landmarks were placed on the dorsal surface of the pubic body and ischiopubic ramus to capture their overall shape in two dimensions, so the study is easily replicable and applicable. The scans were separately run through a generalized Procrustes, principal components (PCA), and canonical linear discriminant function analysis (DFA). The DFA results show high classification accuracy for the pubic body (94% males, 100% females) and the ischiopubic ramus (100% females, 97% males), with the PCA DFA allowing a researcher to explore specific shape changes driving the differentiation between groups. GMM was able to quantify and successfully discriminant the shape changes between males and females for small elements of the pubis, which can be applied to fragmentary remains and future morphological methods.


2020 ◽  
Vol 90 (10) ◽  
pp. 1410-1435
Author(s):  
Sojiro Fukuda ◽  
Hajime Naruse

ABSTRACT Hybrid event beds are the deposits from sediment gravity flows that change their rheological behavior through their passage, entraining muddy sediments and damping turbulence. Muddy facies of hybrid event beds are often associated with abundant mud clasts which show a wide variety of size and shape. The variation of clast occurrence in hybrid event beds is expected to preserve the information of entrainment and transport processes of muddy sediments in submarine density currents. However, previous analyses of hybrid event beds have focused on describing the overall clast occurrence rather than the statistical size and shape analyses because traditional shape parameters are incapable of characterizing the complex shape of mud clasts. Here, a new quantitative grain-shape analysis of mud clasts is conducted and allows visualization of the spatial variation of clast size and shape, which suggests the wide variety of origin and transport systems of entrained mud clasts. This new method revises the traditional elliptic Fourier analysis, substituting Fourier power spectra (FPS) for traditional elliptic Fourier descriptors to overcome the mirror-wise shape problem. Further, principal-component analysis is shown to capture significant shape attributes more effectively than traditional shape parameters. The proposed method is applied to mud clasts in sediment-gravity-flow deposits in the lower Pleistocene Otadai Formation, central Japan. Results imply that there are distinctive shape and size differences of mud clasts that are strongly associated with depositional facies rather than the distance from the source. The clasts have a higher angularity than other facies in the debrite intervals in hybrid event beds. It is also shown that clasts in sandy, structureless facies have different characteristics in shapes based on elongation and convexity compared to laminated facies. Comparison between different shape-analysis methods demonstrates that none of the traditional methods are able to visualize these trends as effectively as the method presented herein. These results highlight the importance of the quantitative shape analysis of sediment grains and the effectiveness of FPS-based elliptic Fourier analysis.


2019 ◽  
Vol 94 (3) ◽  
pp. 568-579
Author(s):  
Alexander O. Averianov

AbstractKazachostylops occidentalis Nesov, 1987b, based on partial maxilla and dentary from the upper Paleocene Zhylga locality in South Kazakhstan, is redescribed. A new phylogenetic hypothesis of Arctostylopida is proposed based on phylogenetic analysis of 26 characters and 17 taxa. Kazachostylops is recovered as a sister taxon to the Arctostylopinae, the advanced clade of Asian and North American arctostylopids characterized by pseudohypocone on upper molars and reduced trigonid of lower molars, with the ectolophid being attached labial on the trigonid. Kazachostylops differs from more basal arctostylopids (Asiostylops, Allostylops, Bothriostylops, and Wanostylops) by higher-crowned molars, M1–3 metaconule absent, m1–3 entoconid connected with ectolophid by entolophid, and m2 wider than m1 and m3. Principal component analyses of the upper and lower dentition of arctostylopids show great distinctness of Kazachostylops from other members of the group. The arctostylopid taxa are reviewed, and the new genus Enantiostylops is erected for ‘Sinostylops’ progressus Tang and Yan, 1976 from the lower Eocene of China, because of uniquely concave parastylar area on upper molars.UUID: http://zoobank.org/a46d8f29-fd73-4e59-88dc-fcc55b12d1d3


Sign in / Sign up

Export Citation Format

Share Document