scholarly journals Multivariate Investigation of NP-Hard Problems: Boundaries Between Parameterized Tractability and Intractability

2020 ◽  
Author(s):  
Uéverton Souza ◽  
Fábio Protti ◽  
Maise Da Silva ◽  
Dieter Rautenbach

In this thesis we present a multivariate investigation of the complexity of some NP-hard problems, i.e., we first develop a systematic complexity analysis of these problems, defining its subproblems and mapping which one belongs to each side of an “imaginary boundary” between polynomial time solvability and intractability. After that, we analyze which sets of aspects of these problems are sources of their intractability, that is, subsets of aspects for which there exists an algorithm to solve the associated problem, whose non-polynomial time complexity is purely a function of those sets. Thus, we use classical and parameterized complexity in an alternate and complementary approach, to show which subproblems of the given problems are NP-hard and latter to diagnose for which sets of parameters the problems are fixed-parameter tractable, or in FPT. This thesis exhibits a classical and parameterized complexity analysis of different groups of NP-hard problems. The addressed problems are divided into four groups of distinct nature, in the context of data structures, combinatorial games, and graph theory: (I) and/or graph solution and its variants; (II) flooding-filling games; (III) problems on P3-convexity; (IV) problems on induced matchings.

Author(s):  
Marko Samer ◽  
Stefan Szeider

Parameterized complexity is a new theoretical framework that considers, in addition to the overall input size, the effects on computational complexity of a secondary measurement, the parameter. This two-dimensional viewpoint allows a fine-grained complexity analysis that takes structural properties of problem instances into account. The central notion is “fixed-parameter tractability” which refers to solvability in polynomial time for each fixed value of the parameter such that the order of the polynomial time bound is independent of the parameter. This chapter presents main concepts and recent results on the parameterized complexity of the satisfiability problem and it outlines fundamental algorithmic ideas that arise in this context. Among the parameters considered are the size of backdoor sets with respect to various tractable base classes and the treewidth of graph representations of satisfiability instances.


2012 ◽  
Vol 21 (5) ◽  
pp. 643-660 ◽  
Author(s):  
YONATAN BILU ◽  
NATHAN LINIAL

We introduce the notion of a stable instance for a discrete optimization problem, and argue that in many practical situations only sufficiently stable instances are of interest. The question then arises whether stable instances of NP-hard problems are easier to solve, and in particular, whether there exist algorithms that solve in polynomial time all sufficiently stable instances of some NP-hard problem. The paper focuses on the Max-Cut problem, for which we show that this is indeed the case.


2013 ◽  
Vol 47 ◽  
pp. 475-519 ◽  
Author(s):  
N. Betzler ◽  
A. Slinko ◽  
J. Uhlmann

We investigate two systems of fully proportional representation suggested by Chamberlin Courant and Monroe. Both systems assign a representative to each voter so that the "sum of misrepresentations" is minimized. The winner determination problem for both systems is known to be NP-hard, hence this work aims at investigating whether there are variants of the proposed rules and/or specific electorates for which these problems can be solved efficiently. As a variation of these rules, instead of minimizing the sum of misrepresentations, we considered minimizing the maximal misrepresentation introducing effectively two new rules. In the general case these "minimax" versions of classical rules appeared to be still NP-hard. We investigated the parameterized complexity of winner determination of the two classical and two new rules with respect to several parameters. Here we have a mixture of positive and negative results: e.g., we proved fixed-parameter tractability for the parameter the number of candidates but fixed-parameter intractability for the number of winners. For single-peaked electorates our results are overwhelmingly positive: we provide polynomial-time algorithms for most of the considered problems. The only rule that remains NP-hard for single-peaked electorates is the classical Monroe rule.


2021 ◽  
Vol 71 ◽  
pp. 993-1048
Author(s):  
Niclas Boehmer ◽  
Robert Bredereck ◽  
Klaus Heeger ◽  
Rolf Niedermeier

We initiate the study of external manipulations in Stable Marriage by considering  several manipulative actions as well as several manipulation goals. For instance, one goal  is to make sure that a given pair of agents is matched in a stable solution, and this may be  achieved by the manipulative action of reordering some agents' preference lists. We present  a comprehensive study of the computational complexity of all problems arising in this way.  We find several polynomial-time solvable cases as well as NP-hard ones. For the NP-hard  cases, focusing on the natural parameter "budget" (that is, the number of manipulative  actions one is allowed to perform), we also conduct a parameterized complexity analysis  and encounter mostly parameterized hardness results. 


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 146
Author(s):  
Andreas Emil Feldmann ◽  
Karthik C. Karthik C. S. ◽  
Euiwoong Lee ◽  
Pasin Manurangsi

Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions.


Author(s):  
Sushmita Gupta ◽  
Saket Saurabh ◽  
Ramanujan Sridharan ◽  
Meirav Zehavi

Single-elimination tournaments are a popular format in competitive environments. The Tournament Fixing Problem (TFP), which is the problem of finding a seeding of the players such that a certain player wins the resulting tournament, is known to be NP-hard in general and fixed-parameter tractable when parameterized by the feedback arc set number of the input tournament (an oriented complete graph) of expected wins/loses. However, the existence of polynomial kernelizations (efficient preprocessing) for TFP has remained open. In this paper, we present the first polynomial kernelization for TFP parameterized by the feedback arc set number of the input tournament. We achieve this by providing a polynomial-time routine that computes a SAT encoding where the number of clauses is bounded polynomially in the feedback arc set number.


Sign in / Sign up

Export Citation Format

Share Document