Data Cleansing of Multiple Environmental Monitoring Time Series Using Spatio-Temporal Correlation
Aplicações computacionais baseadas em dados de sensores são uma realidade, mas os dados coletados e transmitidos para as aplicações raramente chegam prontos para o uso devido a perdas e ruídos de vários tipos. Neste trabalho desenvolve-se uma abordagem baseada em correlação espaço temporal para limpeza de dados de múltiplas séries temporais de sensores quanto à ruído, dados ausentes e outliers. O método foi testato em seis conjuntos de dados reais publicamente disponíveis e o seu desempenho foi comparado com um método baseline, com um autoencoder denoising e com outro método publicado. Os resultados mostram que a abordagem proposta é competitiva e requer menos dados de treinamento do que os concorrentes.