scholarly journals 3A: mAchine learning Algorithm Applied to emotions in melodies

2019 ◽  
Author(s):  
Cláudio Gomes ◽  
Josue Da Silva ◽  
Marco Leal ◽  
Thiago Nascimento

At every moment, innumerable emotions can indicate and provide questions about daily attitudes. These emotions can interfere or stimulate different goals. Whether in school, home or social life, the environment increases the itinerant part of the process of attitudes. The musician is also passive of these emotions and incorporates them into his compositions for various reasons. Thus, the musical composition has innumerable sources, for example, academic formation, experiences, influences and perceptions of the musical scene. In this way, this work develops the mAchine learning Algorithm Applied to emotions in melodies (3A). The 3A recognizes the musician’s melodies in real time to generate accompaniment melody. As input, The 3A used MIDI data from a synthesizer to generate accompanying MIDI output or sound file by the programming language Chuck. Initially in this work, it is using the Gregorian modes for each intention of composition. In case, the musician changes the mode or tone, the 3A has an adaptation to continuing the musical sequence. Currently, The 3A uses artificial neural networks to predict and adapt melodies. It started from mathematical series for the formation of melodies that present interesting results for both mathematicians and musicians.

Author(s):  
Prof. Barry Wiling

This Paper describes about Identification of Mouth Cancer laceration Using Machine Learning Approach .The SVM algorithm is used for this purpose. Image segmentation operations are performed using: Resizing an image, Gray scale conversion, Histogram equalization and Classifying the Segmented image using SVM. SVM is used to reduce the complexity faced in the existing system comprising of Texture Segmentation and ANN (Artificial Neural Networks) Algorithm. SVM is a simple Machine Learning algorithm when compared to ANN. The outcome of the paper is to segment and classify the Malignancy from the Non-Malignant region using the classifier SVM. SVM performs the classification based on the dataset that contains the trained images.


Author(s):  
Amirata Ghorbani ◽  
Abubakar Abid ◽  
James Zou

In order for machine learning to be trusted in many applications, it is critical to be able to reliably explain why the machine learning algorithm makes certain predictions. For this reason, a variety of methods have been developed recently to interpret neural network predictions by providing, for example, feature importance maps. For both scientific robustness and security reasons, it is important to know to what extent can the interpretations be altered by small systematic perturbations to the input data, which might be generated by adversaries or by measurement biases. In this paper, we demonstrate how to generate adversarial perturbations that produce perceptively indistinguishable inputs that are assigned the same predicted label, yet have very different interpretations. We systematically characterize the robustness of interpretations generated by several widely-used feature importance interpretation methods (feature importance maps, integrated gradients, and DeepLIFT) on ImageNet and CIFAR-10. In all cases, our experiments show that systematic perturbations can lead to dramatically different interpretations without changing the label. We extend these results to show that interpretations based on exemplars (e.g. influence functions) are similarly susceptible to adversarial attack. Our analysis of the geometry of the Hessian matrix gives insight on why robustness is a general challenge to current interpretation approaches.


2020 ◽  
pp. practneurol-2020-002688
Author(s):  
Stephen D Auger ◽  
Benjamin M Jacobs ◽  
Ruth Dobson ◽  
Charles R Marshall ◽  
Alastair J Noyce

Modern clinical practice requires the integration and interpretation of ever-expanding volumes of clinical data. There is, therefore, an imperative to develop efficient ways to process and understand these large amounts of data. Neurologists work to understand the function of biological neural networks, but artificial neural networks and other forms of machine learning algorithm are likely to be increasingly encountered in clinical practice. As their use increases, clinicians will need to understand the basic principles and common types of algorithm. We aim to provide a coherent introduction to this jargon-heavy subject and equip neurologists with the tools to understand, critically appraise and apply insights from this burgeoning field.


2021 ◽  
Author(s):  
Catherine Ollagnier ◽  
Claudia Kasper ◽  
Anna Wallenbeck ◽  
Linda Keeling ◽  
Siavash A Bigdeli

Tail biting is a detrimental behaviour that impacts the welfare and health of pigs. Early detection of tail biting precursor signs allows for preventive measures to be taken, thus avoiding the occurrence of the tail biting event. This study aimed to build a machine-learning algorithm for real time detection of upcoming tail biting outbreaks, using feeding behaviour data recorded by an electronic feeder. Prediction capacities of seven machine learning algorithms (e.g., random forest, neural networks) were evaluated from daily feeding data collected from 65 pens originating from 2 herds of grower-finisher pigs (25-100kg), in which 27 tail biting events occurred. Data were divided into training and testing data, either by randomly splitting data into 75% (training set) and 25% (testing set), or by randomly selecting pens to constitute the testing set. The random forest algorithm was able to predict 70% of the upcoming events with an accuracy of 94%, when predicting events in pens for which it had previous data. The detection of events for unknown pens was less sensitive, and the neural network model was able to detect 14% of the upcoming events with an accuracy of 63%. A machine-learning algorithm based on ongoing data collection should be considered for implementation into automatic feeder systems for real time prediction of tail biting events.


2019 ◽  
Vol 8 (4) ◽  
pp. 2299-2302

Implementing a machine learning algorithm gives you a deep and practical appreciation for how the algorithm works. This knowledge can also help you to internalize the mathematical description of the algorithm by thinking of the vectors and matrices as arrays and the computational intuitions for the transformations on those structures. There are numerous micro-decisions required when implementing a machine learning algorithm, like Select programming language, Select Algorithm, Select Problem, Research Algorithm, Unit Test and these decisions are often missing from the formal algorithm descriptions. The notion of implementing a job recommendation (a classic machine learning problem) system using to two algorithms namely, KNN [3] and logistic regression [3] in more than one programming language (C++ and python) is introduced and we bring here the analysis and comparison of performance of each. We specifically focus on building a model for predictions of jobs in the field of computer sciences but they can be applied to a wide range of other areas as well. This paper can be used by implementers to deduce which language will best suite their needs to achieve accuracy along with efficiency We are using more than one algorithm to establish the fact that our finding is not just singularly applicable.


2021 ◽  
Author(s):  
Rushad Ravilievich Rakhimov ◽  
Oleg Valerievich Zhdaneev ◽  
Konstantin Nikolaevich Frolov ◽  
Maxim Pavlovich Babich

Abstract The ultimate objective of this paper is to describe the experience of using a machine learning model prepared by the ensemble method to prevent stuck pipe events during well construction process on extended reach wells. The tasks performed include collecting, analyzing and cleaning historical data, selecting and preparing a machine learning model, testing it on real-time data by means of desktop application. The idea is to display the solution at the rig floor, allowing Driller to quickly take actions for prevention of stuck pipe event. Historical data mining and analysis were performed using software for remote monitoring. Preparation, labelling and cleaning of historical and real-time data were executed using programmable scripts and big data techniques. The machine learning algorithm was developed using the ensemble method, which allows to combine several models to improve the final result. On the field of interest, the most common type of stuck pipe are solids induced pack offs. They occur due to insufficient hole cleaning from drilled cuttings and wellbore collapse due to rocks instability. Stuck pipe prevention on extended reach drilling (ERD) wells requires holistic approach meanwhile final role is assigned to the driller. Due to continuously exceeding ERD envelope and increased workloads on both personnel and drilling equipment, the effectiveness of preventing accidents is deteriorating. This leads to severe consequences: Bottom Hole Assembly lost in hole, the necessity to re-drill the bore and eventually to increased Non-Productive Time (NPT). Developed application based on ensemble machine learning algorithm shows prediction accuracy above 94%. Reacting on alarms, driller can quickly take measures to prevent downhole accidents during well construction of ERD wells.


Sign in / Sign up

Export Citation Format

Share Document