scholarly journals Comparação entre LSTM e CLCNN na detecção de requisições maliciosas em ataques na web

2021 ◽  
Author(s):  
Rafael Bosse Brinhosa ◽  
Marcos A. Michels Schlickmann ◽  
Eduardo da Silva ◽  
Carlos Becker Westphall ◽  
Carla Merkle Westphall

Com o uso de aplicações web em ambientes dinâmicos de computação em nuvem integrados com dispositivos IoT, os ataques de injeção de SQL e de XSS (Cross-Site Scripting) continuam causando problemas para a segurança. A detecção de requisições maliciosas a nível de aplicação representa um desafio na pesquisa, que está evoluindo usando técnicas de Machine Learning e redes neurais. Este trabalho apresenta a comparação entre duas arquiteturas de aprendizado de máquina usadas para detectar requisições web maliciosas: LSTM (Long Short-Term Memory) e CLCNN (Character-level Convolutional Neural Network). Os resultados demonstram que a CLCNN é a mais eficaz em todas as métricas, com uma acurácia de 98,13%, precisão de 99,84%, taxa de detecção em 95,66% e com um F1-score de 97,70%.

2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


2019 ◽  
Vol 1 (2) ◽  
pp. 74-84
Author(s):  
Evan Kusuma Susanto ◽  
Yosi Kristian

Asynchronous Advantage Actor-Critic (A3C) adalah sebuah algoritma deep reinforcement learning yang dikembangkan oleh Google DeepMind. Algoritma ini dapat digunakan untuk menciptakan sebuah arsitektur artificial intelligence yang dapat menguasai berbagai jenis game yang berbeda melalui trial and error dengan mempelajari tempilan layar game dan skor yang diperoleh dari hasil tindakannya tanpa campur tangan manusia. Sebuah network A3C terdiri dari Convolutional Neural Network (CNN) di bagian depan, Long Short-Term Memory Network (LSTM) di tengah, dan sebuah Actor-Critic network di bagian belakang. CNN berguna sebagai perangkum dari citra output layar dengan mengekstrak fitur-fitur yang penting yang terdapat pada layar. LSTM berguna sebagai pengingat keadaan game sebelumnya. Actor-Critic Network berguna untuk menentukan tindakan terbaik untuk dilakukan ketika dihadapkan dengan suatu kondisi tertentu. Dari hasil percobaan yang dilakukan, metode ini cukup efektif dan dapat mengalahkan pemain pemula dalam memainkan 5 game yang digunakan sebagai bahan uji coba.


Author(s):  
Ahmed Nasser ◽  
Huthaifa AL-Khazraji

<p>Predictive maintenance (PdM) is a successful strategy used to reduce cost by minimizing the breakdown stoppages and production loss. The massive amount of data that results from the integration between the physical and digital systems of the production process makes it possible for deep learning (DL) algorithms to be applied and utilized for fault prediction and diagnosis. This paper presents a hybrid convolutional neural network based and long short-term memory network (CNN-LSTM) approach to a predictive maintenance problem. The proposed CNN-LSTM approach enhances the predictive accuracy and also reduces the complexity of the model. To evaluate the proposed model, two comparisons with regular LSTM and gradient boosting decision tree (GBDT) methods using a freely available dataset have been made. The PdM model based on CNN-LSTM method demonstrates better prediction accuracy compared to the regular LSTM, where the average F-Score increases form 93.34% in the case of regular LSTM to 97.48% for the proposed CNN-LSTM. Compared to the related works the proposed hybrid CNN-LSTM PdM approach achieved better results in term of accuracy.</p>


2020 ◽  
Vol 27 (3) ◽  
pp. 373-389 ◽  
Author(s):  
Ashesh Chattopadhyay ◽  
Pedram Hassanzadeh ◽  
Devika Subramanian

Abstract. In this paper, the performance of three machine-learning methods for predicting short-term evolution and for reproducing the long-term statistics of a multiscale spatiotemporal Lorenz 96 system is examined. The methods are an echo state network (ESN, which is a type of reservoir computing; hereafter RC–ESN), a deep feed-forward artificial neural network (ANN), and a recurrent neural network (RNN) with long short-term memory (LSTM; hereafter RNN–LSTM). This Lorenz 96 system has three tiers of nonlinearly interacting variables representing slow/large-scale (X), intermediate (Y), and fast/small-scale (Z) processes. For training or testing, only X is available; Y and Z are never known or used. We show that RC–ESN substantially outperforms ANN and RNN–LSTM for short-term predictions, e.g., accurately forecasting the chaotic trajectories for hundreds of numerical solver's time steps equivalent to several Lyapunov timescales. The RNN–LSTM outperforms ANN, and both methods show some prediction skills too. Furthermore, even after losing the trajectory, data predicted by RC–ESN and RNN–LSTM have probability density functions (pdf's) that closely match the true pdf – even at the tails. The pdf of the data predicted using ANN, however, deviates from the true pdf. Implications, caveats, and applications to data-driven and data-assisted surrogate modeling of complex nonlinear dynamical systems, such as weather and climate, are discussed.


Sign in / Sign up

Export Citation Format

Share Document