scholarly journals Effect of Grinding Time on the Particle Size Distribution Characteristics of Tuff Powder

2021 ◽  
pp. X
Author(s):  
Shuhua LIU ◽  
Hao WANG ◽  
Hongling WANG

We study the grinding dynamic behavior and particle size distribution (PSD) characteristics of tuff powder. With the analysis of particle size and data of activity test, the results indicate that tuff powder is easy to be ground for the coarse-grained while is difficult for the fine-grained. It is feasible to quantitatively express the milling process of tuff powder by Divas-Aliavden milling dynamic equation. The milling speed and the milling time are negatively correlated, and the grinding efficiency is minimized after 60 min. Equivalent particle size (EPS) is positively linearly correlated with the logarithm of grinding time, while specific surface area (SSA) is inversely correlated, both of them have a highly linear correlation. The PSD of tuff powder, which complies well with the Rosin-Rammler-Bennet (RRB) distribution model, has typical fractal characteristics, and its fractal dimension is also positively correlated with the milling time.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Byung-Wan Jo ◽  
Sumit Chakraborty ◽  
Ki Heon Kim ◽  
Yun Sung Lee

The present investigation is dealing with the communition of the cement particle to the ultrafine level (~220 nm) utilizing the bead milling process, which is considered as a top-down nanotechnology. During the grinding of the cement particle, the effect of various parameters such as grinding time (1–6 h) and grinding agent (methanol and ethanol) on the production of the ultrafine cement has also been investigated. Performance of newly produced ultrafine cement is elucidated by the chemical composition, particle size distribution, and SEM and XRD analyses. Based on the particle size distribution of the newly produced ultrafine cement, it was assessed that the size of the cement particle decreases efficiently with increase in grinding time. Additionally, it is optimized that the bead milling process is able to produce 90% of the cement particle<350 nm and 50% of the cement particle<220 nm, respectively, after 6.3 h milling without affecting the chemical phases. Production of the ultrafine cement utilizing this method will promote the construction industries towards the development of smart and sustainable construction materials.


2012 ◽  
Vol 188 ◽  
pp. 382-387 ◽  
Author(s):  
Oana Gîngu ◽  
Claudiu Nicolicescu ◽  
Gabriela Sima

This research focuses on Ag-Cu powder particles processing by mechanical alloying (MA) route. The powder mixture is representative for the eutectic composition, respectively 72%wt. Ag + 28% wt. Cu. The milling process is developed in high energy ball mill Pulverisette 6, using different size for the milling balls, in wet conditions for 80 hours. One of the most important parameter studied in this research is the particle size distribution of the processed powder mixture. Thus, it changes along the milling time, from 10…75 µm at the beginning of MA process up to (60 – 80) nm at 80 h. The milling parameters will be optimized in future research depending on the particle size distribution related with thermophysical and thermodynamic properties focused on electrical and optical properties improvement.


2018 ◽  
Vol 60 (2) ◽  
pp. 202-208 ◽  
Author(s):  
Hao Yan ◽  
Jixiong Zhang ◽  
Jiaqi Wang ◽  
Nan Zhou ◽  
Sheng Zhang

2021 ◽  
Vol 1031 ◽  
pp. 58-66
Author(s):  
Vitaly Polosin

For the particle size distribution function various forms of exponential models are used to construct models of the properties of dispersed substance. The most difficult stage of applied research is to determine the shape of the particle distribution model. For the particle size distribution function various forms of exponential models are used to construct models of the properties of dispersed substance. The most difficult stage of applied research is to determine the shape of the particle distribution model. The article proposes a uniform model for setting the interval of information uncertainty of non-symmetric particle size distributions. Based on the analysis of statistical and information uncertainty intervals, new shape coefficients of distribution models are constructed, these are the entropy coefficients for shifted and non shifted distributions of the Amoroso family. Graphics of dependence of entropy coefficients of non-symmetrical distributions show that distributions well-known are distinguish at small of the shapes parameters. Also it is illustrated for parameters of the form more than 2 that it is preferable to use the entropy coefficients for the unshifted distributions.The material contains also information measures for the well-known logarithmic normal distribution which is a limiting case of distribution Amorozo.


Author(s):  
Li Bao ◽  
Ting-an Zhang ◽  
Weimin Long ◽  
Anh V. Nguyen ◽  
Guozhi Lv ◽  
...  

2011 ◽  
Vol 672 ◽  
pp. 157-160
Author(s):  
Ionel Chicinaş ◽  
Viorel Pop ◽  
Florin Popa ◽  
Virgiliu Călin Prică ◽  
Traian Florin Marinca ◽  
...  

The formation of quaternary 76Ni17Fe5Cu2Cr (wt. %) alloy by mechanical alloying is investigated. The elemental powders of Ni, Fe, Cu and Cr where milled in argon atmosphere in a planetary ball mill for time up to 20 h. Formation of the alloy was checked by X-ray diffraction studies. It is found that the rapid formation of the alloy lead to the rapid establishment of an equilibrium between the welding and fracture process during milling, leading to a constant particle size distribution over a big range of milling time. The morphology of the powders, studied by scanning electron microscopy (SEM) confirms the rapid increase in size. The particle size distribution and the flowability of the powders are also analyzed as a function of milling time. Enhanced magnetization was found for the milled samples, compared to a cast alloy.


2021 ◽  
pp. 4-4
Author(s):  
Nemanja Bojanic ◽  
Aleksandar Fistes ◽  
Tatjana Dosenovic ◽  
Aleksandar Takaci ◽  
Mirjana Brdar ◽  
...  

A method based on the reverse breakage matrix approach is proposed for controlling the effects that milling has on the particle size distribution and composition of the comminuted material. Applicability, possibilities, and limitations of the proposed method are tested on examples related to the process of wheat flour milling. It has been shown that the reverse matrix approach can be successfully used for defining the particle size distribution of the input material leading to the desired, predetermined particle size and compositional distribution in the output material. Moreover, we have illustrated that it is possible to simultaneously control both, input and output particle size distribution, together with the composition of the output material.


Sign in / Sign up

Export Citation Format

Share Document