scholarly journals Impact of Gray Matter Pathology on Cognitive Function in Multiple Sclerosis

Author(s):  
Mike Andrea ◽  
Guttmann Charles ◽  
Illes Zsolt
2016 ◽  
Vol 23 (13) ◽  
pp. 1697-1706 ◽  
Author(s):  
Mohammad Arfan Ikram ◽  
Meike W Vernooij ◽  
Gennady V Roshchupkin ◽  
Albert Hofman ◽  
Cornelia M van Duijn ◽  
...  

Background: Multiple sclerosis (MS) affects brain structure and cognitive function and has a heritable component. Over a 100 common genetic risk variants have been identified, but most carriers do not develop MS. For other neurodegenerative diseases, risk variants have effects outside patient populations, but this remains uninvestigated for MS. Objectives: To study the effect of MS-associated genetic variants on brain structure and cognitive function in the general population. Methods: We studied middle-aged and elderly individuals (mean age = 65.7 years) from the population-based Rotterdam Study. We determined 107 MS variants and additionally created a risk score combining all variants. Magnetic resonance imaging ( N = 4710) was performed to obtain measures of brain macrostructure, white matter microstructure, and gray matter voxel-based morphometry. A cognitive test battery ( N = 7556) was used to test a variety of cognitive domains. Results: The MS risk score was associated with smaller gray matter volume over the whole brain (βstandardized = −0.016; p = 0.044), but region-specific analyses did not survive multiple testing correction. Similarly, no significant associations with brain structure were observed for individual variants. For cognition, rs2283792 was significantly associated with poorer memory (β = −0.064; p = 3.4 × 10−5). Conclusion: Increased genetic susceptibility to MS may affect brain structure and cognition in persons without disease, pointing to a “hidden burden” of MS.


2021 ◽  
pp. 135245852110221
Author(s):  
Marco Vercellino ◽  
Stella Marasciulo ◽  
Silvia Grifoni ◽  
Elena Vallino-Costassa ◽  
Chiara Bosa ◽  
...  

Objectives: To investigate the extent of synaptic loss, and the contribution of gray matter (GM) inflammation and demyelination to synaptic loss, in multiple sclerosis (MS) brain tissue. Methods: This study was performed on two different post-mortem series of MS and control brains, including deep GM and cortical GM. MS brain samples had been specifically selected for the presence of active demyelinating GM lesions. Over 1,000,000 individual synapses were identified and counted using confocal microscopy, and further characterized as glutamatergic/GABAergic. Synaptic counts were also correlated with neuronal/axonal loss. Results: Important synaptic loss was observed in active demyelinating GM lesions (−58.9%), while in chronic inactive GM lesions, synaptic density was only mildly reduced compared to adjacent non-lesional gray matter (NLGM) (−12.6%). Synaptic loss equally affected glutamatergic and GABAergic synapses. Diffuse synaptic loss was observed in MS NLGM compared to control GM (−21.2% overall). Conclusion: This study provides evidence, in MS brain tissue, of acute synaptic damage/loss during active GM inflammatory demyelination and of synaptic reorganization in chronically demyelinated GM, affecting equally glutamatergic and GABAergic synapses. Furthermore, this study provides a strong indication of widespread synaptic loss in MS NLGM also independently from focal GM demyelination.


Author(s):  
Fatemeh ayoobi ◽  
Parvin khalili ◽  
Hossein azin ◽  
Shohreh Shahrokhabadi ◽  
Mahdieh azin

2021 ◽  
pp. 135245852110196
Author(s):  
Rosa Cortese ◽  
Marco Battaglini ◽  
Francesca Parodi ◽  
Maria Laura Stromillo ◽  
Emilio Portaccio ◽  
...  

The mechanisms responsible for the favorable clinical course in multiple sclerosis (MS) remain unclear. In this longitudinal study, we assessed whether magnetic resonance imaging (MRI)-based changes in focal and diffuse brain damage are associated with a long-term favorable MS diseases course. We found that global brain and gray matter (GM) atrophy changes were milder in MS patients with long-standing disease (⩾30 years from onset) and favorable (no/minimal disability) clinical course than in sex-age-matched disable MS patients, independently of lesions accumulation. Data showed that different trajectories of volume changes, as reflected by mild GM atrophy, may characterize patients with long-term favorable evolution.


Sign in / Sign up

Export Citation Format

Share Document