scholarly journals Change of Pore Fluid Pressure Versus Frictional Coefficient During Fault Slip

Author(s):  
Yuta Mitsui
2020 ◽  
Author(s):  
Wen-lu Zhu ◽  
Tiange Xing ◽  
Takamasa Kanaya ◽  
Zachary Zega ◽  
Melodie French

<p>Sudden motions of fault (i.e., fault propagation and slip) cause earthquakes. Understanding the mechanics of earthquakes requires quantitative knowledge of fault propagation and slip instability, which has long been a focus of experimental rock mechanics. In a classic framework based on the elastic rebound theory, the earthquake cycle includes the interseismic period of strain accumulation and the coseismic period of sudden strain release along a tectonic fault.</p><p>Geophysical observations reveal diverse behaviorsof fault motions resulted from strain accumulation and release, from aseismic creep to slow slip events (SSEs) to regular earthquakes. Discovery of SSEs during the interseismic period provides a new means to assess the mechanical states of a seismogenic fault between earthquakes. Most seismic studies link SSEs to high pore fluid pressure. Yet, the mechanical link between slow fault slip and high pore fluid pressure is not well understood. We conduct experimental investigation to elucidate the mechanisms responsible for pore fluid stabilization of fault propagation and slip.</p><p>Our experimental results show that slip events along gouge bearing faults can transform from fast to slow with increasing pore fluid pressures while keeping the effective pressure (i.e., confining pressure minus pore fluid pressure) constant. In these experiments, a layer of fine-grained quartz gouge was placed between the saw-cut surfaces in porous sandstone samples. The saw-cut samples were subject to conventional triaxial loading under a constant effective pressure using various combinations of confining and pore fluid pressures. Different slip events, from dynamic, audible stick-slip to slow, silent  slip, with a range of slip rates and stress drops were produced along the gauge-filled saw-cut surface. These results suggest that on the same fault, varying pore fluid pressure alone could result in a range of fault slip behaviors from dynamic to creep.</p><p>Experimental data further demonstrate that under the same effective pressure, high pore fluid pressure conditions stabilize fault propagation in a wide range of intact rocks including granite, serpentine, and sandstones. In  compact rocks (initial porosity <5%) the stabilization effect can be explained by dilatant hardening. When dilatancy occurs faster than fluid diffusion along a propagating fracture, the resultant increase in effective normal stress impedes further fracture growth. In porous sandstones (initial porosity >10%), however, dilatancy hardening alone could not adequately explain the stable  post-peak fault growth observed at slow loading rates where drained conditions are achieved. Based on the quantitative microstructural analysis of the deformed samples, we propose that the stable fault growth in highly permeable sandstones manifests stable cracking due to stress corrosion. These results elucidate the important controls of pore fluid on rock strength and fault slip beyond the effective stress law. The results provide a mechanic link between the spatially correlated SSEs and high pore fluid pressure conditions.</p>


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kodai Nakagomi ◽  
Toshiko Terakawa ◽  
Satoshi Matsumoto ◽  
Shinichiro Horikawa

An amendment to this paper has been published and can be accessed via the original article.


2019 ◽  
Vol 767 ◽  
pp. 228168 ◽  
Author(s):  
Melodie E French ◽  
Greg Hirth ◽  
Keishi Okazaki

2012 ◽  
Vol 117 (B5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Luca Malagnini ◽  
Francesco Pio Lucente ◽  
Pasquale De Gori ◽  
Aybige Akinci ◽  
Irene Munafo'

Geology ◽  
2018 ◽  
Vol 46 (4) ◽  
pp. 299-302 ◽  
Author(s):  
Jiyao Li ◽  
Donna J. Shillington ◽  
Demian M. Saffer ◽  
Anne Bécel ◽  
Mladen R. Nedimović ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1784 ◽  
Author(s):  
Heping Shu ◽  
Jinzhu Ma ◽  
Haichao Yu ◽  
Marcel Hürlimann ◽  
Peng Zhang ◽  
...  

Debris flows that involve loess material produce important damage around the world. However, the kinematics of such processes are poorly understood. To better understand these kinematics, we used a flume to measure the kinematics of debris flows with different mixture densities and weights. We used sensors to measure pore fluid pressure and total normal stress. We measured flow patterns, velocities, and depths using a high-speed camera and laser range finder to identify the temporal evolution of the flow behavior and the corresponding peaks. We constructed fitting functions for the relationships between the maximum values of the experimental parameters. The hydrographs of the debris flows could be divided into four phases: increase to a first minor peak, a subsequent smooth increase to a second peak, fluctuation until a third major peak, and a final continuous decrease. The flow depth, velocity, total normal stress, and pore fluid pressure were strongly related to the mixture density and total mixture weight. We defined the corresponding relationships between the flow parameters and mixture kinematics. Linear and exponential relationships described the maximum flow depth and the mixture weight and density, respectively. The flow velocity was linearly related to the weight and density. The pore fluid pressure and total normal stress were linearly related to the weight, but logarithmically related to the density. The regression goodness of fit for all functions was >0.93. Therefore, these functions are accurate and could be used to predict the consequences of loess debris flows. Our results provide an improved understanding of the effects of mixture density and weight on the kinematics of debris flows in loess areas, and can help landscape managers prevent and design improved engineering solutions.


Sign in / Sign up

Export Citation Format

Share Document