scholarly journals Interferon Regulatory Factor-2 Regulates Hematopoietic Stem Cells in Mouse Bone Marrow

Author(s):  
Atsuko Masumi ◽  
Shoichiro Miyatake ◽  
Tomoko Kohno ◽  
Toshifumi Matsuyam
Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 74-83 ◽  
Author(s):  
SJ Szilvassy ◽  
S Cory

Abstract Efficient gene delivery to multipotential hematopoietic stem cells would greatly facilitate the development of effective gene therapy for certain hematopoietic disorders. We have recently described a rapid multiparameter sorting procedure for significantly enriching stem cells with competitive long-term lymphomyeloid repopulating ability (CRU) from 5-fluorouracil (5-FU)-treated mouse bone marrow. The sorted cells have now been tested as targets for retrovirus-mediated delivery of a marker gene, NeoR. They were cocultured for 4 days with fibroblasts producing a high titer of retrovirus in medium containing combinations of the hematopoietic growth factors interleukin-3 (IL-3), IL-6, c-kit ligand (KL), and leukemia inhibitory factor (LIF) and then injected into lethally irradiated recipients, together with sufficient “compromised” bone marrow cells to provide short-term support. Over 80% of the transplanted mice displayed high levels (> or = 20%) of donor- derived leukocytes when analyzed 4 to 6 months later. Proviral DNA was detected in 87% of these animals and, in half of them, the majority of the hematopoietic cells were marked. Thus, infection of the stem cells was most effective. The tissue and cellular distribution of greater than 100 unique clones in 55 mice showed that most sorted stem cells had lymphoid as well as myeloid repopulating potential. Secondary transplantation provided strong evidence for infection of very primitive stem cells because, in several instances, different secondary recipients displayed in their marrow, spleen, thymus and day 14 spleen colony-forming cells the same proviral integration pattern as the primary recipient. Neither primary engraftment nor marking efficiency varied for stem cells cultured in IL-3 + IL-6, IL-3 + IL-6 + KL, IL-3 + IL-6 + LIF, or all four factors, but those cultured in IL-3 + IL-6 + LIF appeared to have lower secondary engraftment potential. Provirus expression was detected in 72% of the strongly marked mice, albeit often at low levels. Highly efficient retroviral marking of purified lymphomyeloid repopulating stem cells should enhance studies of stem cell biology and facilitate analysis of genes controlling hematopoietic differentiation and transformation.


2006 ◽  
Vol 34 (9) ◽  
pp. 1248-1260 ◽  
Author(s):  
Oleg Tsinkalovsky ◽  
Elisabeth Filipski ◽  
Benedikte Rosenlund ◽  
Robert B. Sothern ◽  
Hans Geir Eiken ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2293-2299 ◽  
Author(s):  
G. Prem Veer Reddy ◽  
Cheryl Y. Tiarks ◽  
Lizhen Pang ◽  
Joanne Wuu ◽  
Chung-Cheng Hsieh ◽  
...  

Abstract Hematopoietic stem cells purified from mouse bone marrow are quiescent with less than 2% of Lin− Hoechstlow/Rhodaminelow (Lin− Holow/Rholow) and 10% to 15% of Lin−/Sca+ cells in S phase. These cells enter proliferative cycle and progress through G1 and into S phase in the presence of cytokines and 5% heat-inactivated fetal calf serum (HI-FCS). Cytokine-stimulated Lin− Holow/Rholow cells took 36 to 40 hours to complete first division and only 12 hours to complete each of 5 subsequent divisions. These cells require 16 to 18 hours to transit through G0 /G1 period and 28 to 30 hours to enter into mid-S phase during the first cycle. Up to 56% of Lin− Rholow/Holow cells are high-proliferative potential (7 factor-responsive) colony-forming cells (HPP-CFC). At isolation, HPP-CFC are quiescent, but after 28 to 30 hours of culture, greater than 60% are in S phase. Isoleucine-deprivation of Lin−Holow/Rholow cells in S phase of first cycle reversibly blocked them from entering into second cycle. After the release from isoleucine-block, these cells exhibited a G1 period of less than 2 hours and entered into mid-S phase by 12 hours. Thus, the duration of G1 phase of the cells in second cycle is 4 to 5 times shorter than that observed in their first cycle. Similar cell cycle kinetics are observed with Lin−/Sca+ population of bone marrow cells. Stem cell factor (SCF ) alone, in the presence of HI-FCS, is as effective as a cocktail of 2 to 7 cytokines in inducing quiescent Lin−/Sca+ cells to enter into proliferative cycle. Aphidicolin treatment reversibly blocked cytokine-stimulated Lin−/Sca+ cells at G1 /S boundary, allowing their tight synchrony as they progress through first S phase and enter into second G1 . For these cells also, SCF alone is sufficient for their progression through S phase. These studies indicate a very short G1 phase for stem cells induced to proliferate and offer experimental approaches to synchronize murine hematopoietic stem cells.


2009 ◽  
Vol 15 (6) ◽  
pp. 696-700 ◽  
Author(s):  
Taku Sato ◽  
Nobuyuki Onai ◽  
Hiroki Yoshihara ◽  
Fumio Arai ◽  
Toshio Suda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document