scholarly journals Sum-of-Sinusoids-Based Fading Channel Models with Rician K-Factor and Vehicle Speed Ratio in Vehicular Ad Hoc Networks

10.5772/34378 ◽  
2012 ◽  
Author(s):  
Yuhao Wang ◽  
Xing Xing
2014 ◽  
Vol 18 (10) ◽  
pp. 1787-1790 ◽  
Author(s):  
Ruifeng Chen ◽  
Zhengguo Sheng ◽  
Zhangdui Zhong ◽  
Minming Ni ◽  
Victor C. M. Leung ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 212
Author(s):  
Fan Yang ◽  
Yanglong Sun ◽  
Sai Zou ◽  
Xiongbiao Luo

In vehicular ad hoc networks (VANETs), safety applications require a reliable and delay-guaranteed broadcasting service to disseminate safety messages. However, channel fading and the high mobility of vehicles make it very challenging for a broadcasting scheme to meet the strict service demands of safety messages. On the other hand, cooperative retransmission is effective in mitigating wireless channel impairments by utilizing the broadcast nature of wireless channels. Therefore, this paper proposes a repetition-based cooperative broadcasting (RBCB) scheme for safety messages in VANETs. The proposed scheme enables the selected helper vehicles to perform the cooperative rebroadcasting along with the source vehicle during the source vehicle’s slot in order to increase the transmission reliability of safety messages and reduce rebroadcasting times. The performance of RBCB scheme is mathematically analyzed in terms of packet delivery probability and average packet delay under the Rayleigh fading channel. Moreover, extensive simulations are conducted to evaluate the performance of RBCB scheme. Both mathematical analysis and simulation results demonstrate that RBCB scheme significantly improves the packet delivery probability and decreases the average packet delay.


Author(s):  
Tahani Gazdar ◽  
Abdelfettah Belghith ◽  
Abderrahim Benslimane

In this paper, the authors propose a dynamic Public Key Infrastructure (PKI) for vehicular ad hoc networks to distribute the role of the central certification authority (CA) among a set of dynamically elected CAs. The election process is based on a clustering algorithm relying on trust levels and relative mobility. Furthermore, the authors have adapted the Dynamic Demilitarized Zones to protect the elected CAs from malicious nodes and enable them to act as registration authorities (RA). Extensive simulations are conducted to evaluate the performance of the clustering algorithm and investigate the impact of the vehicle speed, the vehicle average arrival rate, and the percentage of confident vehicles on the stability and efficiency of the security infrastructure. The authors demonstrate the percentage of confident nodes has a little impact on these performance metrics and that the minimum number of CAs to cover the entire platoon.


Author(s):  
Tahani Gazdar ◽  
Abdelfettah Belghith ◽  
Abderrahim Benslimane

In this paper, the authors propose a dynamic Public Key Infrastructure (PKI) for vehicular ad hoc networks to distribute the role of the central certification authority (CA) among a set of dynamically elected CAs. The election process is based on a clustering algorithm relying on trust levels and relative mobility. Furthermore, the authors have adapted the Dynamic Demilitarized Zones to protect the elected CAs from malicious nodes and enable them to act as registration authorities (RA). Extensive simulations are conducted to evaluate the performance of the clustering algorithm and investigate the impact of the vehicle speed, the vehicle average arrival rate, and the percentage of confident vehicles on the stability and efficiency of the security infrastructure. The authors demonstrate the percentage of confident nodes has a little impact on these performance metrics and that the minimum number of CAs to cover the entire platoon.


Sign in / Sign up

Export Citation Format

Share Document