scholarly journals Remodelling of Skeletal Muscle Extracellular Matrix: Effect of Unloading and Reloading

Author(s):  
Eva-Maria Riso ◽  
Priit Kaasik ◽  
Teet Seene
2012 ◽  
Vol 92 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sandra G. Velleman ◽  
Jonghyun Shin ◽  
Xuehui Li ◽  
Yan Song

Velleman, S. G., Shin, J., Li, X. and Song, Y. 2012. Review: The skeletal muscle extracellular matrix: Possible roles in the regulation of muscle development and growth. Can. J. Anim. Sci. 92: 1–10. Skeletal muscle fibers are surrounded by an extrinsic extracellular matrix environment. The extracellular matrix is composed of collagens, proteoglycans, glycoproteins, growth factors, and cytokines. How the extracellular matrix influences skeletal muscle development and growth is an area that is not completely understood at this time. Studies on myogenesis have largely been directed toward the cellular components and overlooked that muscle cells secrete a complex extracellular matrix network. The extracellular matrix modulates muscle development by acting as a substrate for muscle cell migration, growth factor regulation, signal transduction of information from the extracellular matrix to the intrinsic cellular environment, and provides a cellular structural architecture framework necessary for tissue function. This paper reviews extracellular matrix regulation of muscle growth with a focus on secreted proteoglycans, cell surface proteoglycans, growth factors and cytokines, and the dynamic nature of the skeletal muscle extracellular matrix, because of its impact on the regulation of muscle cell proliferation and differentiation during myogenesis.


2000 ◽  
Vol 113 (20) ◽  
pp. 3583-3591 ◽  
Author(s):  
M. Fluck ◽  
V. Tunc-Civelek ◽  
M. Chiquet

Tenascin-C and tenascin-Y are two structurally related extracellular matrix glycoproteins that in many tissues show a complementary expression pattern. Tenascin-C and the fibril-associated minor collagen XII are expressed in tissues bearing high tensile stress and are located in normal skeletal muscle, predominantly at the myotendinous junction that links muscle fibers to tendon. In contrast, tenascin-Y is strongly expressed in the endomysium surrounding single myofibers, and in the perimysial sheath around fiber bundles. We previously showed that tenascin-C and collagen XII expression in primary fibroblasts is regulated by changes in tensile stress. Here we have tested the hypothesis that the expression of tenascin-C, tenascin-Y and collagen XII in skeletal muscle connective tissue is differentially modulated by mechanical stress in vivo. Chicken anterior latissimus dorsi muscle (ALD) was mechanically stressed by applying a load to the left wing. Within 36 hours of loading, expression of tenascin-C protein was ectopically induced in the endomysium along the surface of single muscle fibers throughout the ALD, whereas tenascin-Y protein expression was barely affected. Expression of tenascin-C protein stayed elevated after 7 days of loading whereas tenascin-Y protein was reduced. Northern blot analysis revealed that tenascin-C mRNA was induced in ALD within 4 hours of loading while tenascin-Y mRNA was reduced within the same period. In situ hybridization indicated that tenascin-C mRNA induction after 4 hours of loading was uniform throughout the ALD muscle in endomysial fibroblasts. In contrast, the level of tenascin-Y mRNA expression in endomysium appeared reduced within 4 hours of loading. Tenascin-C mRNA and protein induction after 4–10 hours of loading did not correlate with signs of macrophage infiltration. Tenascin-C protein decreased again with removal of the load and nearly disappeared after 5 days. Furthermore, loading was also found to induce expression of collagen XII mRNA and protein, but to a markedly lower level, with slower kinetics and only partial reversibility. The results suggest that mechanical loading directly and reciprocally controls the expression of extracellular matrix proteins of the tenascin family in skeletal muscle.


2011 ◽  
Vol 25 (6) ◽  
pp. 1943-1959 ◽  
Author(s):  
Abigail L. Mackey ◽  
Simon Brandstetter ◽  
Peter Schjerling ◽  
Jens Bojsen‐Moller ◽  
Klaus Qvortrup ◽  
...  

2002 ◽  
Vol 115 (10) ◽  
pp. 2041-2051 ◽  
Author(s):  
Juan Pablo Henriquez ◽  
Juan Carlos Casar ◽  
Luis Fuentealba ◽  
David J. Carey ◽  
Enrique Brandan

Heparan sulfate chains of proteoglycans bind to and regulate the function of a wide variety of ligands. In myoblasts, heparan sulfate proteoglycans modulate basic fibroblast growth factor activity and regulate skeletal muscle differentiation. The aim of this study was to identify endogenous extracellular ligands for muscle cell heparan sulfate proteoglycans.[35S]heparin ligand blot assays identified a 33/30 kDa doublet(p33/30) in detergent/high ionic strength extracts and heparin soluble fractions obtained from intact C2C12 myoblasts. p33/30 is localized on the plasma membrane or in the extracellular matrix where its level increases during muscle differentiation. Heparin-agarose-purified p33/30 was identified as histone H1. In vitro binding assays showed that histone H1 binds specifically to perlecan. Immunofluorescence microscopy showed that an extracellular pool of histone H1 colocalizes with perlecan in the extracellular matrix of myotube cultures and in regenerating skeletal muscle. Furthermore, histone H1 incorporated into the extracellular matrix strongly stimulated myoblast proliferation via a heparan-sulfate-dependent mechanism.These results indicate that histone H1 is present in the extracellular matrix of skeletal muscle cells, where it interacts specifically with perlecan and exerts a strong proliferative effect on myoblasts, suggesting a role for histone H1 during skeletal muscle regeneration.


2018 ◽  
Vol 9 ◽  
Author(s):  
Vinicius Guzzoni ◽  
Manoel B. T. Ribeiro ◽  
Gisele N. Lopes ◽  
Rita de Cássia Marqueti ◽  
Rosângela V. de Andrade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document