scholarly journals Extracellular matrix synthesis by skeletal muscle in culture. Proteins and effect of enzyme degradation.

1982 ◽  
Vol 257 (19) ◽  
pp. 11437-11442
Author(s):  
R L Beach ◽  
W V Burton ◽  
W J Hendricks ◽  
B W Festoff
2020 ◽  
Vol 381 (1) ◽  
pp. 177-187
Author(s):  
Monika L. Bayer ◽  
Rene B. Svensson ◽  
Peter Schjerling ◽  
Ashley S. Williams ◽  
David H. Wasserman ◽  
...  

1985 ◽  
Vol 225 (3) ◽  
pp. 619-627 ◽  
Author(s):  
R L Beach ◽  
J S Rao ◽  
B W Festoff

We have previously shown that G8-1, a murine clonal skeletal-muscle cell line, produces a substrate-attached extracellular matrix [Beach, Burton, Hendricks & Festoff (1982) J. Biol. Chem. 257, 11437-11442]. To examine further the expression of extracellular-matrix proteins by muscle cells, we have analysed the collagenous proteins secreted by G8-1 myoblasts. We have found that collagens and/or procollagens, corresponding to genetic types I, III and IV (and possibly V), are produced and secreted by G8-1 myoblasts. The major secreted collagenous polypeptides were identified as alpha 1 type I and its precursors by using pulse-chase studies, pepsin and collagenase digestions and CNBr fragmentation. The presence of lesser amounts of the other collagens was determined by immunoprecipitation. These results demonstrate that clonal skeletal-muscle cells, in the absence of fibroblasts and an exogenous collagen substrate, are able to synthesize and secrete several extracellular-matrix collagenous proteins in proportions similar to those which are commonly found in muscle tissue and mixed cultures of muscle cells and fibroblasts.


2012 ◽  
Vol 92 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sandra G. Velleman ◽  
Jonghyun Shin ◽  
Xuehui Li ◽  
Yan Song

Velleman, S. G., Shin, J., Li, X. and Song, Y. 2012. Review: The skeletal muscle extracellular matrix: Possible roles in the regulation of muscle development and growth. Can. J. Anim. Sci. 92: 1–10. Skeletal muscle fibers are surrounded by an extrinsic extracellular matrix environment. The extracellular matrix is composed of collagens, proteoglycans, glycoproteins, growth factors, and cytokines. How the extracellular matrix influences skeletal muscle development and growth is an area that is not completely understood at this time. Studies on myogenesis have largely been directed toward the cellular components and overlooked that muscle cells secrete a complex extracellular matrix network. The extracellular matrix modulates muscle development by acting as a substrate for muscle cell migration, growth factor regulation, signal transduction of information from the extracellular matrix to the intrinsic cellular environment, and provides a cellular structural architecture framework necessary for tissue function. This paper reviews extracellular matrix regulation of muscle growth with a focus on secreted proteoglycans, cell surface proteoglycans, growth factors and cytokines, and the dynamic nature of the skeletal muscle extracellular matrix, because of its impact on the regulation of muscle cell proliferation and differentiation during myogenesis.


1989 ◽  
Vol 9 ◽  
pp. S182
Author(s):  
M. Lenzi ◽  
R. Solmi ◽  
G. Ballardini ◽  
P. Croff ◽  
F. Giostra ◽  
...  

2000 ◽  
Vol 113 (20) ◽  
pp. 3583-3591 ◽  
Author(s):  
M. Fluck ◽  
V. Tunc-Civelek ◽  
M. Chiquet

Tenascin-C and tenascin-Y are two structurally related extracellular matrix glycoproteins that in many tissues show a complementary expression pattern. Tenascin-C and the fibril-associated minor collagen XII are expressed in tissues bearing high tensile stress and are located in normal skeletal muscle, predominantly at the myotendinous junction that links muscle fibers to tendon. In contrast, tenascin-Y is strongly expressed in the endomysium surrounding single myofibers, and in the perimysial sheath around fiber bundles. We previously showed that tenascin-C and collagen XII expression in primary fibroblasts is regulated by changes in tensile stress. Here we have tested the hypothesis that the expression of tenascin-C, tenascin-Y and collagen XII in skeletal muscle connective tissue is differentially modulated by mechanical stress in vivo. Chicken anterior latissimus dorsi muscle (ALD) was mechanically stressed by applying a load to the left wing. Within 36 hours of loading, expression of tenascin-C protein was ectopically induced in the endomysium along the surface of single muscle fibers throughout the ALD, whereas tenascin-Y protein expression was barely affected. Expression of tenascin-C protein stayed elevated after 7 days of loading whereas tenascin-Y protein was reduced. Northern blot analysis revealed that tenascin-C mRNA was induced in ALD within 4 hours of loading while tenascin-Y mRNA was reduced within the same period. In situ hybridization indicated that tenascin-C mRNA induction after 4 hours of loading was uniform throughout the ALD muscle in endomysial fibroblasts. In contrast, the level of tenascin-Y mRNA expression in endomysium appeared reduced within 4 hours of loading. Tenascin-C mRNA and protein induction after 4–10 hours of loading did not correlate with signs of macrophage infiltration. Tenascin-C protein decreased again with removal of the load and nearly disappeared after 5 days. Furthermore, loading was also found to induce expression of collagen XII mRNA and protein, but to a markedly lower level, with slower kinetics and only partial reversibility. The results suggest that mechanical loading directly and reciprocally controls the expression of extracellular matrix proteins of the tenascin family in skeletal muscle.


2001 ◽  
Vol 16 (3) ◽  
pp. 500-505 ◽  
Author(s):  
Alessia Fornoni ◽  
Flavia Cornacchia ◽  
Guy A. Howard ◽  
Bernard A. Roos ◽  
Gary E. Striker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document