scholarly journals Climate Change, Forest Fires and Air Quality in Portugal in the 21st Century

10.5772/9812 ◽  
2010 ◽  
Author(s):  
Anabela Carvalho
2020 ◽  
Author(s):  
Sergiy Stepanenko ◽  
Anatoliy Polovyi

<p>In 2019 three Ukrainian institutions (Taras Shevchenko National University of Kyiv, Ukrainian Hydrometeorological Institute and Odessa State Environmental University) joined the Pan-Eurasian Experiment (PEEX). This can be considered as a practical result of implementation of the Erasmus+ international educational project of ‘Adaptive Learning Environment for Competence in Economic and Societal Impacts of Local Weather, Air Quality and Climate’ (ECOIMPACT) being in line with the ideology of PEEX (research – research infrastructure – education) and covering part of the project’s geographic region.</p><p>Inclusion of the Ukrainian institutions in the project will make it possible to develop studies into climate change issues, their impact on air quality, dynamics of carbon cycles in ecosystems, biodiversity loss, greenhouse gas emissions and forest fires, public health, chemization of industry and agriculture, food provision, energy production and access to fresh water in Ukraine –  all those tasks which are designated as priority ones in the PEEX project.</p><p>Under the framework of Infrastructure subprogramme of the PEEX, Ukrainian partners plan to create a long-term research infrastructure to consist of an extensive network of research stations, being only standard meteorological stations so far. Unfortunately, in Ukraine there are no FluxNet micrometeorological stations, let alone flagship research stations, to provide for measurement of a complete set of characteristics of the ecosystem-to-atmosphere interaction.</p><p>Having regard to the joint research plan of the Ukrainian project partners for 2020 it is supposed to revise the capacities of the existing network of hydrometeorological stations and the feasibility of its expansion by means of automatic weather stations ‘Inspector-Meteo’ (AWS-IM) and air quality transmitters ‘Vaisala’ AQT-420 available at three Ukrainian universities as a result of the Erasmus+ project ECOIMPACT, as well as acquisition of data from the network of automatic stations of the Ukrainian company IT-LYNX, which established a network of 55 AWS-IM for agribusiness purposes. The AWS-IM will expand the range of standard meteorological observations, and supplementation of it with models of environmental processes will make it possible to simulate the state of natural and man-made ecosystems in spatial and temporal scales.</p><p>It is additionally proposed to include AQT-420 transmitters available to the three Ukrainian universities due to the acquisition under the Erasmus+  project ECOIMPACT into the programme of monitoring air quality in large cities of Ukraine, with a view to the probable subsequent co-operation with the MegaSense project.</p><p>A detailed research plan of the Ukrainian participants for PEEX programme collaboration for the year 2020 is to be presented at the PEEX Inter- and Transdisciplinary Session at the EGU General Assembly.</p><p>Participation of Ukrainian universities, being the project partners in the PEEX educational subprogramme Transfer of Knowledge, is also important in order to provide training for a new generation of researchers in Ukraine who will use the new opportunities and tools gained over the course of implementation of the PEEX programme, including those ones that could be aimed at adaptation, mitigation of the climate change effects as well as dissemination of new knowledge and technologies acquired under the project to all concerned decision makers and the wider public.</p><div> <div> </div> </div>


2006 ◽  
Vol 11 (4) ◽  
pp. 847-859 ◽  
Author(s):  
M. D. Flannigan ◽  
B. D. Amiro ◽  
K. A. Logan ◽  
B. J. Stocks ◽  
B. M. Wotton

2019 ◽  
Vol 14 (7) ◽  
pp. 074030 ◽  
Author(s):  
D M Westervelt ◽  
C T Ma ◽  
M Z He ◽  
A M Fiore ◽  
P L Kinney ◽  
...  

2010 ◽  
Vol 19 (8) ◽  
pp. 1127 ◽  
Author(s):  
Yves Bergeron ◽  
Dominic Cyr ◽  
Martin P. Girardin ◽  
Christopher Carcaillet

Natural ecosystems have developed within ranges of conditions that can serve as references for setting conservation targets or assessing the current ecological integrity of managed ecosystems. Because of their climate determinism, forest fires are likely to have consequences that could exacerbate biophysical and socioeconomical vulnerabilities in the context of climate change. We evaluated future trends in fire activity under climate change in the eastern Canadian boreal forest and investigated whether these changes were included in the variability observed during the last 7000 years from sedimentary charcoal records from three lakes. Prediction of future annual area burned was made using simulated Monthly Drought Code data collected from an ensemble of 19 global climate model experiments. The increase in burn rate that is predicted for the end of the 21st century (0.45% year–1 with 95% confidence interval (0.32, 0.59) falls well within the long‐term past variability (0.37 to 0.90% year–1). Although our results suggest that the predicted change in burn rates per se will not move this ecosystem to new conditions, the effects of increasing fire incidence cumulated with current rates of clear‐cutting or other low‐retention types of harvesting, which still prevail in this region, remain preoccupying.


Sign in / Sign up

Export Citation Format

Share Document