scholarly journals Development and Characterization of New Functionally Graded Aluminium Alloys

2021 ◽  
Author(s):  
Elisa Fracchia ◽  
Mario Rosso

Nowadays, aluminium alloys are adopted mainly to produce engineering and automotive components. The present investigation aims to design, cast and characterize novel functionally graded materials (FGMs) produced using Al-Mg and Al-Si alloys by gravity casting technique. Alloys were sequentially cast into a mould to obtain an FGM to realizing great mechanical and metallurgical bonding. Zn addition was further performed in FGM to increase the mechanical properties, thanks to the nucleation of the intermetallic phases MgZn2. Castings were subsequently mechanically tested by tensile tests, bending tests, hardness and microhardness measures to assess the products\' quality. Microstructural characterizations were performed along the FGM to assess the metallurgical bonding and evaluate the microstructures obtained. Fracture, microstructural and compositional analysis will highlight the quality of this new FGM proposed. Possible applications of these materials are suggested, as automotive pistons or structural components.

2015 ◽  
Vol 830-831 ◽  
pp. 383-386 ◽  
Author(s):  
Akhil S. Karun ◽  
Hari Sanil ◽  
T.P.D. Rajan ◽  
Uma Thanu Subramonia Pillai ◽  
B.C. Pai

Light weight aluminium alloys and low-density materials have drawn the attention of researchers as potential structural materials for transportation sector due to the requirement of effective reduction in fuel consumption, stringent emission norms and higher payload capacity. Functionally Graded Materials (FGM) provides variation in properties and better functional performance within a component. Sequential casting is fairly a new technique to produce functionally graded materials and components by controlled mould filling process. Bimetallics of aluminium alloys are prepared by sequential casting using A390-A319 alloy (cast-cast alloy) and A390-A6061 alloy (cast-wrought alloy) combination and solidified under gravity. The effect of temperature of the two melts and gap between pouring of the melts on microstructure and properties of the bimetals are investigated. The microstructures show good interface bonding between the two different alloy metals. The hardness testing shows higher hardness at hypereutectic alloy region. The process described in this study shows potential and effective approach to create good bonding between two different aluminium alloys to develop advanced functional and structural materials which can be used in various automobile components to reduce the overall weight of the vehicle, by which better fuel efficiency and performance can be achieved.


2008 ◽  
Vol 587-588 ◽  
pp. 400-404
Author(s):  
P. Pinto ◽  
L. Mazare ◽  
Delfim Soares ◽  
F.S. Silva

The Incremental Melting and Solidification Process (IMSP) is a relatively new field for material processing for the production of functionally graded materials. In this process a controlled liquid bath is maintained at the top of the component where new materials are added changing the components composition. Thus, a functionally graded material is obtained with a varying composition along one direction of the component. This paper deals with the influence of one of the process parameters, namely displacement rates between heating coil and mould, in order to evaluate its influence on both metallurgical and mechanical properties of different Al-Si alloys. Hardness and phase distribution, along the main castings axis, were measured. To better assess and characterize the process, two different Al-Si alloys with and without variation of chemical composition along the specimen were analysed. Results demonstrate that a gradual variation of metallurgical and mechanical properties along the component is obtained. It is also shown that Al-Si functionally graded materials can be produced by the incremental melting and solidification process. Results show that the displacement rate is very important on metallurgical and mechanical properties of the obtained alloy.


Sign in / Sign up

Export Citation Format

Share Document